Face recognition systems are designed to be robust against changes in head pose, illumination, and blurring during image capture. If a malicious person presents a face photo of the registered user, they may bypass the authentication process illegally. Such spoofing attacks need to be detected before face recognition. In this paper, we propose a spoofing attack detection method based on Vision Transformer (ViT) to detect minute differences between live and spoofed face images. The proposed method utilizes the intermediate features of ViT, which have a good balance between local and global features that are important for spoofing attack detection, for calculating loss in training and score in inference. The proposed method also introduces two data augmentation methods: face anti-spoofing data augmentation and patch-wise data augmentation, to improve the accuracy of spoofing attack detection. We demonstrate the effectiveness of the proposed method through experiments using the OULU-NPU and SiW datasets.
Malware detection and classification remains a topic of concern for cybersecurity, since it is becoming common for attackers to use advanced obfuscation on their malware to stay undetected. Conventional static analysis is not effective against polymorphic and metamorphic malware as these change their appearance without modifying their behavior, thus defying the analysis by code structure alone. This makes it important to use dynamic detection that monitors malware behavior at runtime. In this paper, we present a dynamic malware categorization framework that extracts API argument calls at the runtime execution of Windows Portable Executable (PE) files. Extracting and encoding the dynamic features of API names, argument return values, and other relative features, we convert raw behavioral data to temporal patterns. To enhance feature portrayal, the generated patterns are subsequently converted into grayscale pictures using a magma colormap. These improved photos are used to teach a Convolutional Neural Network (CNN) model discriminative features, which allows for reliable and accurate malware classification. Results from experiments indicate that our method, with an average accuracy of 98.36% is effective in classifying different classes of malware and benign by integrating dynamic analysis and deep learning. It not only achieves high classification accuracy but also demonstrates significant resilience against typical evasion strategies.
Self-captured full-body videos are popular, but most deployments require mounted cameras, carefully-framed shots, and repeated practice. We propose a more convenient solution that enables full-body video capture using handheld mobile devices. Our approach takes as input two static photos (front and back) of you in a mirror, along with an IMU motion reference that you perform while holding your mobile phone, and synthesizes a realistic video of you performing a similar target motion. We enable rendering into a new scene, with consistent illumination and shadows. We propose a novel video diffusion-based model to achieve this. Specifically, we propose a parameter-free frame generation strategy, as well as a multi-reference attention mechanism, that effectively integrate appearance information from both the front and back selfies into the video diffusion model. Additionally, we introduce an image-based fine-tuning strategy to enhance frame sharpness and improve the generation of shadows and reflections, achieving a more realistic human-scene composition.
Photo retouching is integral to photographic art, extending far beyond simple technical fixes to heighten emotional expression and narrative depth. While artists leverage expertise to create unique visual effects through deliberate adjustments, non-professional users often rely on automated tools that produce visually pleasing results but lack interpretative depth and interactive transparency. In this paper, we introduce PhotoArtAgent, an intelligent system that combines Vision-Language Models (VLMs) with advanced natural language reasoning to emulate the creative process of a professional artist. The agent performs explicit artistic analysis, plans retouching strategies, and outputs precise parameters to Lightroom through an API. It then evaluates the resulting images and iteratively refines them until the desired artistic vision is achieved. Throughout this process, PhotoArtAgent provides transparent, text-based explanations of its creative rationale, fostering meaningful interaction and user control. Experimental results show that PhotoArtAgent not only surpasses existing automated tools in user studies but also achieves results comparable to those of professional human artists.
As sketch research has collectively matured over time, its adaptation for at-mass commercialisation emerges on the immediate horizon. Despite an already mature research endeavour for photos, there is no research on the efficient inference specifically designed for sketch data. In this paper, we first demonstrate existing state-of-the-art efficient light-weight models designed for photos do not work on sketches. We then propose two sketch-specific components which work in a plug-n-play manner on any photo efficient network to adapt them to work on sketch data. We specifically chose fine-grained sketch-based image retrieval (FG-SBIR) as a demonstrator as the most recognised sketch problem with immediate commercial value. Technically speaking, we first propose a cross-modal knowledge distillation network to transfer existing photo efficient networks to be compatible with sketch, which brings down number of FLOPs and model parameters by 97.96% percent and 84.89% respectively. We then exploit the abstract trait of sketch to introduce a RL-based canvas selector that dynamically adjusts to the abstraction level which further cuts down number of FLOPs by two thirds. The end result is an overall reduction of 99.37% of FLOPs (from 40.18G to 0.254G) when compared with a full network, while retaining the accuracy (33.03% vs 32.77%) -- finally making an efficient network for the sparse sketch data that exhibit even fewer FLOPs than the best photo counterpart.
High-quality photography in extreme low-light conditions is challenging but impactful for digital cameras. With advanced computing hardware, traditional camera image signal processor (ISP) algorithms are gradually being replaced by efficient deep networks that enhance noisy raw images more intelligently. However, existing regression-based models often minimize pixel errors and result in oversmoothing of low-light photos or deep shadows. Recent work has attempted to address this limitation by training a diffusion model from scratch, yet those models still struggle to recover sharp image details and accurate colors. We introduce a novel framework to enhance low-light raw images by retasking pre-trained generative diffusion models with the camera ISP. Extensive experiments demonstrate that our method outperforms the state-of-the-art in perceptual quality across three challenging low-light raw image benchmarks.
Accurate and efficient modeling of large-scale urban scenes is critical for applications such as AR navigation, UAV based inspection, and smart city digital twins. While aerial imagery offers broad coverage and complements limitations of ground-based data, reconstructing city-scale environments from such views remains challenging due to occlusions, incomplete geometry, and high memory demands. Recent advances like 3D Gaussian Splatting (3DGS) improve scalability and visual quality but remain limited by dense primitive usage, long training times, and poor suit ability for edge devices. We propose CityGo, a hybrid framework that combines textured proxy geometry with residual and surrounding 3D Gaussians for lightweight, photorealistic rendering of urban scenes from aerial perspectives. Our approach first extracts compact building proxy meshes from MVS point clouds, then uses zero order SH Gaussians to generate occlusion-free textures via image-based rendering and back-projection. To capture high-frequency details, we introduce residual Gaussians placed based on proxy-photo discrepancies and guided by depth priors. Broader urban context is represented by surrounding Gaussians, with importance-aware downsampling applied to non-critical regions to reduce redundancy. A tailored optimization strategy jointly refines proxy textures and Gaussian parameters, enabling real-time rendering of complex urban scenes on mobile GPUs with significantly reduced training and memory requirements. Extensive experiments on real-world aerial datasets demonstrate that our hybrid representation significantly reduces training time, achieving on average 1.4x speedup, while delivering comparable visual fidelity to pure 3D Gaussian Splatting approaches. Furthermore, CityGo enables real-time rendering of large-scale urban scenes on mobile consumer GPUs, with substantially reduced memory usage and energy consumption.
Neural rendering methods have gained significant attention for their ability to reconstruct 3D scenes from 2D images. The core idea is to take multiple views as input and optimize the reconstructed scene by minimizing the uncertainty in geometry and appearance across the views. However, the reconstruction quality is limited by the number of input views. This limitation is further pronounced in complex and dynamic scenes, where certain angles of objects are never seen. In this paper, we propose to use video frame interpolation as the data augmentation method for neural rendering. Furthermore, we design a lightweight yet high-quality video frame interpolation model, PS4PRO (Pixel-to-pixel Supervision for Photorealistic Rendering and Optimization). PS4PRO is trained on diverse video datasets, implicitly modeling camera movement as well as real-world 3D geometry. Our model performs as an implicit world prior, enriching the photo supervision for 3D reconstruction. By leveraging the proposed method, we effectively augment existing datasets for neural rendering methods. Our experimental results indicate that our method improves the reconstruction performance on both static and dynamic scenes.
This paper introduces Guess the Age of Photos, a web platform engaging users in estimating the years of historical photographs through two gamified modes: Guess the Year (predicting a single image's year) and Timeline Challenge (comparing two images to identify the older). Built with Python, Flask, Bootstrap, and PostgreSQL, it uses a 10,150-image subset of the Date Estimation in the Wild dataset (1930-1999). Features like dynamic scoring and leaderboards boost engagement. Evaluated with 113 users and 15,473 gameplays, the platform earned a 4.25/5 satisfaction rating. Users excelled in relative comparisons (65.9% accuracy) over absolute year guesses (25.6% accuracy), with older decades easier to identify. The platform serves as an educational tool, fostering historical awareness and analytical skills via interactive exploration of visual heritage. Furthermore, the platform provides a valuable resource for studying human perception of temporal cues in images and could be used to generate annotated data for training and evaluating computer vision models.
Recent video diffusion models have demonstrated their great capability in generating visually-pleasing results, while synthesizing the correct physical effects in generated videos remains challenging. The complexity of real-world motions, interactions, and dynamics introduce great difficulties when learning physics from data. In this work, we propose DiffPhy, a generic framework that enables physically-correct and photo-realistic video generation by fine-tuning a pre-trained video diffusion model. Our method leverages large language models (LLMs) to explicitly reason a comprehensive physical context from the text prompt and use it to guide the generation. To incorporate physical context into the diffusion model, we leverage a Multimodal large language model (MLLM) as a supervisory signal and introduce a set of novel training objectives that jointly enforce physical correctness and semantic consistency with the input text. We also establish a high-quality physical video dataset containing diverse phyiscal actions and events to facilitate effective finetuning. Extensive experiments on public benchmarks demonstrate that DiffPhy is able to produce state-of-the-art results across diverse physics-related scenarios. Our project page is available at https://bwgzk-keke.github.io/DiffPhy/