Abstract:Class-Incremental Learning (CIL) aims to learn new classes sequentially while retaining the knowledge of previously learned classes. Recently, pre-trained models (PTMs) combined with parameter-efficient fine-tuning (PEFT) have shown remarkable performance in rehearsal-free CIL without requiring exemplars from previous tasks. However, existing adapter-based methods, which incorporate lightweight learnable modules into PTMs for CIL, create new adapters for each new task, leading to both parameter redundancy and failure to leverage shared knowledge across tasks. In this work, we propose ContinuaL Low-Rank Adaptation (CL-LoRA), which introduces a novel dual-adapter architecture combining \textbf{task-shared adapters} to learn cross-task knowledge and \textbf{task-specific adapters} to capture unique features of each new task. Specifically, the shared adapters utilize random orthogonal matrices and leverage knowledge distillation with gradient reassignment to preserve essential shared knowledge. In addition, we introduce learnable block-wise weights for task-specific adapters, which mitigate inter-task interference while maintaining the model's plasticity. We demonstrate CL-LoRA consistently achieves promising performance under multiple benchmarks with reduced training and inference computation, establishing a more efficient and scalable paradigm for continual learning with pre-trained models.
Abstract:Neural rendering methods have gained significant attention for their ability to reconstruct 3D scenes from 2D images. The core idea is to take multiple views as input and optimize the reconstructed scene by minimizing the uncertainty in geometry and appearance across the views. However, the reconstruction quality is limited by the number of input views. This limitation is further pronounced in complex and dynamic scenes, where certain angles of objects are never seen. In this paper, we propose to use video frame interpolation as the data augmentation method for neural rendering. Furthermore, we design a lightweight yet high-quality video frame interpolation model, PS4PRO (Pixel-to-pixel Supervision for Photorealistic Rendering and Optimization). PS4PRO is trained on diverse video datasets, implicitly modeling camera movement as well as real-world 3D geometry. Our model performs as an implicit world prior, enriching the photo supervision for 3D reconstruction. By leveraging the proposed method, we effectively augment existing datasets for neural rendering methods. Our experimental results indicate that our method improves the reconstruction performance on both static and dynamic scenes.
Abstract:Image Coding for Machines (ICM) focuses on optimizing image compression for AI-driven analysis rather than human perception. Existing ICM frameworks often rely on separate codecs for specific tasks, leading to significant storage requirements, training overhead, and computational complexity. To address these challenges, we propose an energy-efficient framework that leverages pre-trained vision backbones to extract robust and versatile latent representations suitable for multiple tasks. We introduce a task-specific low-rank adaptation mechanism, which refines the pre-trained features to be both compressible and tailored to downstream applications. This design minimizes trainable parameters and reduces energy costs for multi-task scenarios. By jointly optimizing task performance and entropy minimization, our method enables efficient adaptation to diverse tasks and datasets without full fine-tuning, achieving high coding efficiency. Extensive experiments demonstrate that our framework significantly outperforms traditional codecs and pre-processors, offering an energy-efficient and effective solution for ICM applications. The code and the supplementary materials will be available at: https://gitlab.com/viper-purdue/efficient-compression.
Abstract:As learned image compression (LIC) methods become increasingly computationally demanding, enhancing their training efficiency is crucial. This paper takes a step forward in accelerating the training of LIC methods by modeling the neural training dynamics. We first propose a Sensitivity-aware True and Dummy Embedding Training mechanism (STDET) that clusters LIC model parameters into few separate modes where parameters are expressed as affine transformations of reference parameters within the same mode. By further utilizing the stable intra-mode correlations throughout training and parameter sensitivities, we gradually embed non-reference parameters, reducing the number of trainable parameters. Additionally, we incorporate a Sampling-then-Moving Average (SMA) technique, interpolating sampled weights from stochastic gradient descent (SGD) training to obtain the moving average weights, ensuring smooth temporal behavior and minimizing training state variances. Overall, our method significantly reduces training space dimensions and the number of trainable parameters without sacrificing model performance, thus accelerating model convergence. We also provide a theoretical analysis on the Noisy quadratic model, showing that the proposed method achieves a lower training variance than standard SGD. Our approach offers valuable insights for further developing efficient training methods for LICs.
Abstract:3D perception plays a crucial role in real-world applications such as autonomous driving, robotics, and AR/VR. In practical scenarios, 3D perception models must continuously adapt to new data and emerging object categories, but retraining from scratch incurs prohibitive costs. Therefore, adopting class-incremental learning (CIL) becomes particularly essential. However, real-world 3D point cloud data often include corrupted samples, which poses significant challenges for existing CIL methods and leads to more severe forgetting on corrupted data. To address these challenges, we consider the scenario in which a CIL model can be updated using point clouds with unknown corruption to better simulate real-world conditions. Inspired by Farthest Point Sampling, we propose a novel exemplar selection strategy that effectively preserves intra-class diversity when selecting replay exemplars, mitigating forgetting induced by data corruption. Furthermore, we introduce a point cloud downsampling-based replay method to utilize the limited replay buffer memory more efficiently, thereby further enhancing the model's continual learning ability. Extensive experiments demonstrate that our method improves the performance of replay-based CIL baselines by 2% to 11%, proving its effectiveness and promising potential for real-world 3D applications.
Abstract:Learned image compression (LIC) using deep learning architectures has seen significant advancements, yet standard rate-distortion (R-D) optimization often encounters imbalanced updates due to diverse gradients of the rate and distortion objectives. This imbalance can lead to suboptimal optimization, where one objective dominates, thereby reducing overall compression efficiency. To address this challenge, we reformulate R-D optimization as a multi-objective optimization (MOO) problem and introduce two balanced R-D optimization strategies that adaptively adjust gradient updates to achieve more equitable improvements in both rate and distortion. The first proposed strategy utilizes a coarse-to-fine gradient descent approach along standard R-D optimization trajectories, making it particularly suitable for training LIC models from scratch. The second proposed strategy analytically addresses the reformulated optimization as a quadratic programming problem with an equality constraint, which is ideal for fine-tuning existing models. Experimental results demonstrate that both proposed methods enhance the R-D performance of LIC models, achieving around a 2\% BD-Rate reduction with acceptable additional training cost, leading to a more balanced and efficient optimization process. The code will be made publicly available.
Abstract:Food portion estimation is crucial for monitoring health and tracking dietary intake. Image-based dietary assessment, which involves analyzing eating occasion images using computer vision techniques, is increasingly replacing traditional methods such as 24-hour recalls. However, accurately estimating the nutritional content from images remains challenging due to the loss of 3D information when projecting to the 2D image plane. Existing portion estimation methods are challenging to deploy in real-world scenarios due to their reliance on specific requirements, such as physical reference objects, high-quality depth information, or multi-view images and videos. In this paper, we introduce MFP3D, a new framework for accurate food portion estimation using only a single monocular image. Specifically, MFP3D consists of three key modules: (1) a 3D Reconstruction Module that generates a 3D point cloud representation of the food from the 2D image, (2) a Feature Extraction Module that extracts and concatenates features from both the 3D point cloud and the 2D RGB image, and (3) a Portion Regression Module that employs a deep regression model to estimate the food's volume and energy content based on the extracted features. Our MFP3D is evaluated on MetaFood3D dataset, demonstrating its significant improvement in accurate portion estimation over existing methods.
Abstract:The enhanced Deep Hierarchical Video Compression-DHVC 2.0-has been introduced. This single-model neural video codec operates across a broad range of bitrates, delivering not only superior compression performance to representative methods but also impressive complexity efficiency, enabling real-time processing with a significantly smaller memory footprint on standard GPUs. These remarkable advancements stem from the use of hierarchical predictive coding. Each video frame is uniformly transformed into multiscale representations through hierarchical variational autoencoders. For a specific scale's feature representation of a frame, its corresponding latent residual variables are generated by referencing lower-scale spatial features from the same frame and then conditionally entropy-encoded using a probabilistic model whose parameters are predicted using same-scale temporal reference from previous frames and lower-scale spatial reference of the current frame. This feature-space processing operates from the lowest to the highest scale of each frame, completely eliminating the need for the complexity-intensive motion estimation and compensation techniques that have been standard in video codecs for decades. The hierarchical approach facilitates parallel processing, accelerating both encoding and decoding, and supports transmission-friendly progressive decoding, making it particularly advantageous for networked video applications in the presence of packet loss. Source codes will be made available.
Abstract:This paper is directed towards the food crystal quality control area for manufacturing, focusing on efficiently predicting food crystal counts and size distributions. Previously, manufacturers used the manual counting method on microscopic images of food liquid products, which requires substantial human effort and suffers from inconsistency issues. Food crystal segmentation is a challenging problem due to the diverse shapes of crystals and their surrounding hard mimics. To address this challenge, we propose an efficient instance segmentation method based on object detection. Experimental results show that the predicted crystal counting accuracy of our method is comparable with existing segmentation methods, while being five times faster. Based on our experiments, we also define objective criteria for separating hard mimics and food crystals, which could benefit manual annotation tasks on similar dataset.
Abstract:Food computing is both important and challenging in computer vision (CV). It significantly contributes to the development of CV algorithms due to its frequent presence in datasets across various applications, ranging from classification and instance segmentation to 3D reconstruction. The polymorphic shapes and textures of food, coupled with high variation in forms and vast multimodal information, including language descriptions and nutritional data, make food computing a complex and demanding task for modern CV algorithms. 3D food modeling is a new frontier for addressing food-related problems, due to its inherent capability to deal with random camera views and its straightforward representation for calculating food portion size. However, the primary hurdle in the development of algorithms for food object analysis is the lack of nutrition values in existing 3D datasets. Moreover, in the broader field of 3D research, there is a critical need for domain-specific test datasets. To bridge the gap between general 3D vision and food computing research, we propose MetaFood3D. This dataset consists of 637 meticulously labeled 3D food objects across 108 categories, featuring detailed nutrition information, weight, and food codes linked to a comprehensive nutrition database. The dataset emphasizes intra-class diversity and includes rich modalities such as textured mesh files, RGB-D videos, and segmentation masks. Experimental results demonstrate our dataset's significant potential for improving algorithm performance, highlight the challenging gap between video captures and 3D scanned data, and show the strength of the MetaFood3D dataset in high-quality data generation, simulation, and augmentation.