Abstract:Training learned image compression (LIC) models entails navigating a challenging optimization landscape defined by the fundamental trade-off between rate and distortion. Standard first-order optimizers, such as SGD and Adam, struggle with \emph{gradient conflicts} arising from competing objectives, leading to slow convergence and suboptimal rate-distortion performance. In this work, we demonstrate that a simple utilization of a second-order quasi-Newton optimizer, \textbf{SOAP}, dramatically improves both training efficiency and final performance across diverse LICs. Our theoretical and empirical analyses reveal that Newton preconditioning inherently resolves the intra-step and inter-step update conflicts intrinsic to the R-D objective, facilitating faster, more stable convergence. Beyond acceleration, we uncover a critical deployability benefit: second-order trained models exhibit significantly fewer activation and latent outliers. This substantially enhances robustness to post-training quantization. Together, these results establish second-order optimization, achievable as a seamless drop-in replacement of the imported optimizer, as a powerful, practical tool for advancing the efficiency and real-world readiness of LICs.
Abstract:The rise of chronic diseases related to diet, such as obesity and diabetes, emphasizes the need for accurate monitoring of food intake. While AI-driven dietary assessment has made strides in recent years, the ill-posed nature of recovering size (portion) information from monocular images for accurate estimation of ``how much did you eat?'' is a pressing challenge. Some 3D reconstruction methods have achieved impressive geometric reconstruction but fail to recover the crucial real-world scale of the reconstructed object, limiting its usage in precision nutrition. In this paper, we bridge the gap between 3D computer vision and digital health by proposing a method that recovers a true-to-scale 3D reconstructed object from a monocular image. Our approach leverages rich visual features extracted from models trained on large-scale datasets to estimate the scale of the reconstructed object. This learned scale enables us to convert single-view 3D reconstructions into true-to-life, physically meaningful models. Extensive experiments and ablation studies on two publicly available datasets show that our method consistently outperforms existing techniques, achieving nearly a 30% reduction in mean absolute volume-estimation error, showcasing its potential to enhance the domain of precision nutrition. Code: https://gitlab.com/viper-purdue/size-matters
Abstract:Real-world meal images often contain multiple food items, making reliable compositional food image generation important for applications such as image-based dietary assessment, where multi-food data augmentation is needed, and recipe visualization. However, modern text-to-image diffusion models struggle to generate accurate multi-food images due to object entanglement, where adjacent foods (e.g., rice and soup) fuse together because many foods do not have clear boundaries. To address this challenge, we introduce Prompt Grafting (PG), a training-free framework that combines explicit spatial cues in text with implicit layout guidance during sampling. PG runs a two-stage process where a layout prompt first establishes distinct regions and the target prompt is grafted once layout formation stabilizes. The framework enables food entanglement control: users can specify which food items should remain separated or be intentionally mixed by editing the arrangement of layouts. Across two food datasets, our method significantly improves the presence of target objects and provides qualitative evidence of controllable separation.
Abstract:Agglomeration refers to the process of crystal clustering due to interparticle forces. Crystal agglomeration analysis from microscopic images is challenging due to the inherent limitations of two-dimensional imaging. Overlapping crystals may appear connected even when located at different depth layers. Because optical microscopes have a shallow depth of field, crystals that are in-focus and out-of-focus in the same image typically reside on different depth layers and do not constitute true agglomeration. To address this, we first quantified camera focus with an instance camera focus prediction network to predict 2 class focus level that aligns better with visual observations than traditional image processing focus measures. Then an instance segmentation model is combined with the predicted focus level for agglomeration classification. Our proposed method has a higher agglomeration classification and segmentation accuracy than the baseline models on ammonium perchlorate crystal and sugar crystal dataset.
Abstract:Generating realistic food images for categories with multiple nouns is surprisingly challenging. For instance, the prompt "egg noodle" may result in images that incorrectly contain both eggs and noodles as separate entities. Multi-noun food categories are common in real-world datasets and account for a large portion of entries in benchmarks such as UEC-256. These compound names often cause generative models to misinterpret the semantics, producing unintended ingredients or objects. This is due to insufficient multi-noun category related knowledge in the text encoder and misinterpretation of multi-noun relationships, leading to incorrect spatial layouts. To overcome these challenges, we propose FoCULR (Food Category Understanding and Layout Refinement) which incorporates food domain knowledge and introduces core concepts early in the generation process. Experimental results demonstrate that the integration of these techniques improves image generation performance in the food domain.




Abstract:Exemplar-Free Continual Learning (EFCL) restricts the storage of previous task data and is highly susceptible to catastrophic forgetting. While pre-trained models (PTMs) are increasingly leveraged for EFCL, existing methods often overlook the inherent imbalance of real-world data distributions. We discovered that real-world data streams commonly exhibit dual-level imbalances, dataset-level distributions combined with extreme or reversed skews within individual tasks, creating both intra-task and inter-task disparities that hinder effective learning and generalization. To address these challenges, we propose PANDA, a Patch-and-Distribution-Aware Augmentation framework that integrates seamlessly with existing PTM-based EFCL methods. PANDA amplifies low-frequency classes by using a CLIP encoder to identify representative regions and transplanting those into frequent-class samples within each task. Furthermore, PANDA incorporates an adaptive balancing strategy that leverages prior task distributions to smooth inter-task imbalances, reducing the overall gap between average samples across tasks and enabling fairer learning with frozen PTMs. Extensive experiments and ablation studies demonstrate PANDA's capability to work with existing PTM-based CL methods, improving accuracy and reducing catastrophic forgetting.




Abstract:As an emerging novel view synthesis approach, 3D Gaussian Splatting (3DGS) demonstrates fast training/rendering with superior visual quality. The two tasks of 3DGS, Gaussian creation and view rendering, are typically separated over time or devices, and thus storage/transmission and finally compression of 3DGS Gaussians become necessary. We begin with a correlation and statistical analysis of 3DGS Gaussian attributes. An inspiring finding in this work reveals that spherical harmonic AC attributes precisely follow Laplace distributions, while mixtures of Gaussian distributions can approximate rotation, scaling, and opacity. Additionally, harmonic AC attributes manifest weak correlations with other attributes except for inherited correlations from a color space. A factorized and parameterized entropy coding method, EntropyGS, is hereinafter proposed. During encoding, distribution parameters of each Gaussian attribute are estimated to assist their entropy coding. The quantization for entropy coding is adaptively performed according to Gaussian attribute types. EntropyGS demonstrates about 30x rate reduction on benchmark datasets while maintaining similar rendering quality compared to input 3DGS data, with a fast encoding and decoding time.
Abstract:We present OpenDCVCs, an open-source PyTorch implementation designed to advance reproducible research in learned video compression. OpenDCVCs provides unified and training-ready implementations of four representative Deep Contextual Video Compression (DCVC) models--DCVC, DCVC with Temporal Context Modeling (DCVC-TCM), DCVC with Hybrid Entropy Modeling (DCVC-HEM), and DCVC with Diverse Contexts (DCVC-DC). While the DCVC series achieves substantial bitrate reductions over both classical codecs and advanced learned models, previous public code releases have been limited to evaluation codes, presenting significant barriers to reproducibility, benchmarking, and further development. OpenDCVCs bridges this gap by offering a comprehensive, self-contained framework that supports both end-to-end training and evaluation for all included algorithms. The implementation includes detailed documentation, evaluation protocols, and extensive benchmarking results across diverse datasets, providing a transparent and consistent foundation for comparison and extension. All code and experimental tools are publicly available at https://gitlab.com/viper-purdue/opendcvcs, empowering the community to accelerate research and foster collaboration.




Abstract:Large Multimodal Models (LMMs) are increasingly applied to meal images for nutrition analysis. However, existing work primarily evaluates proprietary models, such as GPT-4. This leaves the broad range of LLMs underexplored. Additionally, the influence of integrating contextual metadata and its interaction with various reasoning modifiers remains largely uncharted. This work investigates how interpreting contextual metadata derived from GPS coordinates (converted to location/venue type), timestamps (transformed into meal/day type), and the food items present can enhance LMM performance in estimating key nutritional values. These values include calories, macronutrients (protein, carbohydrates, fat), and portion sizes. We also introduce ACETADA, a new food-image dataset slated for public release. This open dataset provides nutrition information verified by the dietitian and serves as the foundation for our analysis. Our evaluation across eight LMMs (four open-weight and four closed-weight) first establishes the benefit of contextual metadata integration over straightforward prompting with images alone. We then demonstrate how this incorporation of contextual information enhances the efficacy of reasoning modifiers, such as Chain-of-Thought, Multimodal Chain-of-Thought, Scale Hint, Few-Shot, and Expert Persona. Empirical results show that integrating metadata intelligently, when applied through straightforward prompting strategies, can significantly reduce the Mean Absolute Error (MAE) and Mean Absolute Percentage Error (MAPE) in predicted nutritional values. This work highlights the potential of context-aware LMMs for improved nutrition analysis.




Abstract:Class-Incremental Learning (CIL) aims to learn new classes sequentially while retaining the knowledge of previously learned classes. Recently, pre-trained models (PTMs) combined with parameter-efficient fine-tuning (PEFT) have shown remarkable performance in rehearsal-free CIL without requiring exemplars from previous tasks. However, existing adapter-based methods, which incorporate lightweight learnable modules into PTMs for CIL, create new adapters for each new task, leading to both parameter redundancy and failure to leverage shared knowledge across tasks. In this work, we propose ContinuaL Low-Rank Adaptation (CL-LoRA), which introduces a novel dual-adapter architecture combining \textbf{task-shared adapters} to learn cross-task knowledge and \textbf{task-specific adapters} to capture unique features of each new task. Specifically, the shared adapters utilize random orthogonal matrices and leverage knowledge distillation with gradient reassignment to preserve essential shared knowledge. In addition, we introduce learnable block-wise weights for task-specific adapters, which mitigate inter-task interference while maintaining the model's plasticity. We demonstrate CL-LoRA consistently achieves promising performance under multiple benchmarks with reduced training and inference computation, establishing a more efficient and scalable paradigm for continual learning with pre-trained models.