Abstract:Downsampling layers are crucial building blocks in CNN architectures, which help to increase the receptive field for learning high-level features and reduce the amount of memory/computation in the model. In this work, we study the generalization of the uniform downsampling layer for group equivariant architectures, e.g., G-CNNs. That is, we aim to downsample signals (feature maps) on general finite groups with anti-aliasing. This involves the following: (a) Given a finite group and a downsampling rate, we present an algorithm to form a suitable choice of subgroup. (b) Given a group and a subgroup, we study the notion of bandlimited-ness and propose how to perform anti-aliasing. Notably, our method generalizes the notion of downsampling based on classical sampling theory. When the signal is on a cyclic group, i.e., periodic, our method recovers the standard downsampling of an ideal low-pass filter followed by a subsampling operation. Finally, we conducted experiments on image classification tasks demonstrating that the proposed downsampling operation improves accuracy, better preserves equivariance, and reduces model size when incorporated into G-equivariant networks
Abstract:Open-vocabulary querying in 3D Gaussian Splatting aims to identify semantically relevant regions within a 3D Gaussian representation based on a given text query. Prior work, such as LangSplat, addressed this task by retrieving these regions in the form of segmentation masks on 2D renderings. More recently, OpenGaussian introduced point-level querying, which directly selects a subset of 3D Gaussians. In this work, we propose a point-level querying method that builds upon LangSplat's framework. Our approach improves the framework in two key ways: (a) we leverage masklets from the Segment Anything Model 2 (SAM2) to establish semantic consistent ground-truth for distilling the language Gaussians; (b) we introduces a novel two-step querying approach that first retrieves the distilled ground-truth and subsequently uses the ground-truth to query the individual Gaussians. Experimental evaluations on three benchmark datasets demonstrate that the proposed method achieves better performance compared to state-of-the-art approaches. For instance, our method achieves an mIoU improvement of +20.42 on the 3D-OVS dataset.
Abstract:Amodal segmentation aims to predict segmentation masks for both the visible and occluded regions of an object. Most existing works formulate this as a supervised learning problem, requiring manually annotated amodal masks or synthetic training data. Consequently, their performance depends on the quality of the datasets, which often lack diversity and scale. This work introduces a tuning-free approach that repurposes pretrained diffusion-based inpainting models for amodal segmentation. Our approach is motivated by the "occlusion-free bias" of inpainting models, i.e., the inpainted objects tend to be complete objects without occlusions. Specifically, we reconstruct the occluded regions of an object via inpainting and then apply segmentation, all without additional training or fine-tuning. Experiments on five datasets demonstrate the generalizability and robustness of our approach. On average, our approach achieves 5.3% more accurate masks over the state-of-the-art.
Abstract:Out-of-distribution (OOD) detection is the task of identifying inputs that deviate from the training data distribution. This capability is essential for safely deploying deep computer vision models in open-world environments. In this work, we propose a post-hoc method, Perturbation-Rectified OOD detection (PRO), based on the insight that prediction confidence for OOD inputs is more susceptible to reduction under perturbation than in-distribution (IND) inputs. Based on the observation, we propose an adversarial score function that searches for the local minimum scores near the original inputs by applying gradient descent. This procedure enhances the separability between IND and OOD samples. Importantly, the approach improves OOD detection performance without complex modifications to the underlying model architectures. We conduct extensive experiments using the OpenOOD benchmark~\cite{yang2022openood}. Our approach further pushes the limit of softmax-based OOD detection and is the leading post-hoc method for small-scale models. On a CIFAR-10 model with adversarial training, PRO effectively detects near-OOD inputs, achieving a reduction of more than 10\% on FPR@95 compared to state-of-the-art methods.
Abstract:Classifier-Free Guidance (CFG) is a widely adopted technique in diffusion/flow models to improve image fidelity and controllability. In this work, we first analytically study the effect of CFG on flow matching models trained on Gaussian mixtures where the ground-truth flow can be derived. We observe that in the early stages of training, when the flow estimation is inaccurate, CFG directs samples toward incorrect trajectories. Building on this observation, we propose CFG-Zero*, an improved CFG with two contributions: (a) optimized scale, where a scalar is optimized to correct for the inaccuracies in the estimated velocity, hence the * in the name; and (b) zero-init, which involves zeroing out the first few steps of the ODE solver. Experiments on both text-to-image (Lumina-Next, Stable Diffusion 3, and Flux) and text-to-video (Wan-2.1) generation demonstrate that CFG-Zero* consistently outperforms CFG, highlighting its effectiveness in guiding Flow Matching models. (Code is available at github.com/WeichenFan/CFG-Zero-star)
Abstract:Model immunization is an emerging direction that aims to mitigate the potential risk of misuse associated with open-sourced models and advancing adaptation methods. The idea is to make the released models' weights difficult to fine-tune on certain harmful applications, hence the name ``immunized''. Recent work on model immunization focuses on the single-concept setting. However, models need to be immunized against multiple concepts in real-world situations. To address this gap, we propose an immunization algorithm that, simultaneously, learns a single ``difficult initialization'' for adaptation methods over a set of concepts. We achieve this by incorporating a differentiable merging layer that combines a set of model weights adapted over multiple concepts. In our experiments, we demonstrate the effectiveness of multi-concept immunization by generalizing prior work's experiment setup of re-learning and personalization adaptation to multiple concepts.
Abstract:Multi-object 3D Grounding involves locating 3D boxes based on a given query phrase from a point cloud. It is a challenging and significant task with numerous applications in visual understanding, human-computer interaction, and robotics. To tackle this challenge, we introduce D-LISA, a two-stage approach incorporating three innovations. First, a dynamic vision module that enables a variable and learnable number of box proposals. Second, a dynamic camera positioning that extracts features for each proposal. Third, a language-informed spatial attention module that better reasons over the proposals to output the final prediction. Empirically, experiments show that our method outperforms the state-of-the-art methods on multi-object 3D grounding by 12.8% (absolute) and is competitive in single-object 3D grounding.
Abstract:Subsampling layers play a crucial role in deep nets by discarding a portion of an activation map to reduce its spatial dimensions. This encourages the deep net to learn higher-level representations. Contrary to this motivation, we hypothesize that the discarded activations are useful and can be incorporated on the fly to improve models' prediction. To validate our hypothesis, we propose a search and aggregate method to find useful activation maps to be used at test time. We applied our approach to the task of image classification and semantic segmentation. Extensive experiments over nine different architectures on multiple datasets show that our method consistently improves model test-time performance, complementing existing test-time augmentation techniques. Our code is available at https://github.com/ca-joe-yang/discard-in-subsampling.
Abstract:Advancements in open-source pre-trained backbones make it relatively easy to fine-tune a model for new tasks. However, this lowered entry barrier poses potential risks, e.g., bad actors developing models for harmful applications. A question arises: Is possible to develop a pre-trained model that is difficult to fine-tune for certain downstream tasks? To begin studying this, we focus on few-shot classification (FSC). Specifically, we investigate methods to make FSC more challenging for a set of restricted classes while maintaining the performance of other classes. We propose to meta-learn over the pre-trained backbone in a manner that renders it a ''poor initialization''. Our proposed Learning to Obstruct (LTO) algorithm successfully obstructs four FSC methods across three datasets, including ImageNet and CIFAR100 for image classification, as well as CelebA for attribute classification.
Abstract:We introduce Tree D-fusion, featuring the first collection of 600,000 environmentally aware, 3D simulation-ready tree models generated through Diffusion priors. Each reconstructed 3D tree model corresponds to an image from Google's Auto Arborist Dataset, comprising street view images and associated genus labels of trees across North America. Our method distills the scores of two tree-adapted diffusion models by utilizing text prompts to specify a tree genus, thus facilitating shape reconstruction. This process involves reconstructing a 3D tree envelope filled with point markers, which are subsequently utilized to estimate the tree's branching structure using the space colonization algorithm conditioned on a specified genus.