Topic:Information Extraction
What is Information Extraction? Information extraction is the process of automatically extracting structured information from unstructured text data.
Papers and Code
Sep 04, 2025
Abstract:Semantic segmentation of overhead remote sensing imagery enables applications in mapping, urban planning, and disaster response. State-of-the-art segmentation networks are typically developed and tuned on ground-perspective photographs and do not directly address remote sensing challenges such as extreme scale variation, foreground-background imbalance, and large image sizes. We explore the incorporation of the differential morphological profile (DMP), a multi-scale shape extraction method based on grayscale morphology, into modern segmentation networks. Prior studies have shown that the DMP can provide critical shape information to Deep Neural Networks to enable superior detection and classification performance in overhead imagery. In this work, we extend prior DMPNet work beyond classification and object detection by integrating DMP features into three state-of-the-art convolutional and transformer semantic segmentation architectures. We utilize both direct input, which adapts the input stem of feature extraction architectures to accept DMP channels, and hybrid architectures, a dual-stream design that fuses RGB and DMP encoders. Using the iSAID benchmark dataset, we evaluate a variety of DMP differentials and structuring element shapes to more effectively provide shape information to the model. Our results show that while non-DMP models generally outperform the direct-input variants, hybrid DMP consistently outperforms direct-input and is capable of surpassing a non-DMP model on mIoU, F1, and Recall.
* 14 pages, 7 figures
Via

Sep 04, 2025
Abstract:Driven by autonomous driving's demands for precise 3D perception, 3D semantic occupancy prediction has become a pivotal research topic. Unlike bird's-eye-view (BEV) methods, which restrict scene representation to a 2D plane, occupancy prediction leverages a complete 3D voxel grid to model spatial structures in all dimensions, thereby capturing semantic variations along the vertical axis. However, most existing approaches overlook height-axis information when processing voxel features. And conventional SENet-style channel attention assigns uniform weight across all height layers, limiting their ability to emphasize features at different heights. To address these limitations, we propose SliceSemOcc, a novel vertical slice based multimodal framework for 3D semantic occupancy representation. Specifically, we extract voxel features along the height-axis using both global and local vertical slices. Then, a global local fusion module adaptively reconciles fine-grained spatial details with holistic contextual information. Furthermore, we propose the SEAttention3D module, which preserves height-wise resolution through average pooling and assigns dynamic channel attention weights to each height layer. Extensive experiments on nuScenes-SurroundOcc and nuScenes-OpenOccupancy datasets verify that our method significantly enhances mean IoU, achieving especially pronounced gains on most small-object categories. Detailed ablation studies further validate the effectiveness of the proposed SliceSemOcc framework.
* 14 pages, accepted by PRCV2025
Via

Sep 05, 2025
Abstract:Recent Video-to-Audio (V2A) generation relies on extracting semantic and temporal features from video to condition generative models. Training these models from scratch is resource intensive. Consequently, leveraging foundation models (FMs) has gained traction due to their cross-modal knowledge transfer and generalization capabilities. One prior work has explored fine-tuning a lightweight mapper network to connect a pre-trained visual encoder with a text-to-audio generation model for V2A. Inspired by this, we introduce the Multiple Foundation Model Mapper (MFM-Mapper). Compared to the previous mapper approach, MFM-Mapper benefits from richer semantic and temporal information by fusing features from dual visual encoders. Furthermore, by replacing a linear mapper with GPT-2, MFM-Mapper improves feature alignment, drawing parallels between cross-modal features mapping and autoregressive translation tasks. Our MFM-Mapper exhibits remarkable training efficiency. It achieves better performance in semantic and temporal consistency with fewer training consuming, requiring only 16\% of the training scale compared to previous mapper-based work, yet achieves competitive performance with models trained on a much larger scale.
Via

Sep 05, 2025
Abstract:The state-of-the-art semantic communication (SC) schemes typically rely on end-to-end deep learning frameworks that lack interpretability and struggle with robust semantic selection and reconstruction under noisy conditions. To address this issue, this paper presents KGRAG-SC, a knowledge graph-assisted SC framework that leverages retrieval-augmented generation principles. KGRAG-SC employs a multi-dimensional knowledge graph, enabling efficient semantic extraction through community-guided entity linking and GraphRAG-assisted processing. The transmitter constructs minimal connected subgraphs that capture essential semantic relationships and transmits only compact entity indices rather than full text or semantic triples. An importance-aware adaptive transmission strategy provides unequal error protection based on structural centrality metrics, prioritizing critical semantic elements under adverse channel conditions. At the receiver, large language models perform knowledge-driven text reconstruction using the shared knowledge graph as structured context, ensuring robust semantic recovery even with partial information loss. Experimental results demonstrate that KGRAG-SC achieves superior semantic fidelity in low Signal-to-Noise Ratio (SNR) conditions while significantly reducing transmission overhead compared to traditional communication methods, highlighting the effectiveness of integrating structured knowledge representation with generative language models for SC systems.
* 7 pages,4 figures,conference
Via

Sep 05, 2025
Abstract:Understanding the complex combustion dynamics within scramjet engines is critical for advancing high-speed propulsion technologies. However, the large scale and high dimensionality of simulation-generated temporal flow field data present significant challenges for visual interpretation, feature differentiation, and cross-case comparison. In this paper, we present TemporalFlowViz, a parameter-aware visual analytics workflow and system designed to support expert-driven clustering, visualization, and interpretation of temporal flow fields from scramjet combustion simulations. Our approach leverages hundreds of simulated combustion cases with varying initial conditions, each producing time-sequenced flow field images. We use pretrained Vision Transformers to extract high-dimensional embeddings from these frames, apply dimensionality reduction and density-based clustering to uncover latent combustion modes, and construct temporal trajectories in the embedding space to track the evolution of each simulation over time. To bridge the gap between latent representations and expert reasoning, domain specialists annotate representative cluster centroids with descriptive labels. These annotations are used as contextual prompts for a vision-language model, which generates natural-language summaries for individual frames and full simulation cases. The system also supports parameter-based filtering, similarity-based case retrieval, and coordinated multi-view exploration to facilitate in-depth analysis. We demonstrate the effectiveness of TemporalFlowViz through two expert-informed case studies and expert feedback, showing TemporalFlowViz enhances hypothesis generation, supports interpretable pattern discovery, and enhances knowledge discovery in large-scale scramjet combustion analysis.
Via

Sep 04, 2025
Abstract:The rapid growth of private car ownership has worsened the urban parking predicament, underscoring the need for accurate and effective parking availability prediction to support urban planning and management. To address key limitations in modeling spatio-temporal dependencies and exploiting multi-source data for parking availability prediction, this study proposes a novel approach with SST-iTransformer. The methodology leverages K-means clustering to establish parking cluster zones (PCZs), extracting and integrating traffic demand characteristics from various transportation modes (i.e., metro, bus, online ride-hailing, and taxi) associated with the targeted parking lots. Upgraded on vanilla iTransformer, SST-iTransformer integrates masking-reconstruction-based pretext tasks for self-supervised spatio-temporal representation learning, and features an innovative dual-branch attention mechanism: Series Attention captures long-term temporal dependencies via patching operations, while Channel Attention models cross-variate interactions through inverted dimensions. Extensive experiments using real-world data from Chengdu, China, demonstrate that SST-iTransformer outperforms baseline deep learning models (including Informer, Autoformer, Crossformer, and iTransformer), achieving state-of-the-art performance with the lowest mean squared error (MSE) and competitive mean absolute error (MAE). Comprehensive ablation studies quantitatively reveal the relative importance of different data sources: incorporating ride-hailing data provides the largest performance gains, followed by taxi, whereas fixed-route transit features (bus/metro) contribute marginally. Spatial correlation analysis further confirms that excluding historical data from correlated parking lots within PCZs leads to substantial performance degradation, underscoring the importance of modeling spatial dependencies.
* 25 pages, 5 figures, under review for journal publication
Via

Sep 04, 2025
Abstract:Historic urban quarters play a vital role in preserving cultural heritage while serving as vibrant spaces for tourism and everyday life. Understanding how tourists perceive these environments is essential for sustainable, human-centered urban planning. This study proposes a multidimensional AI-powered framework for analyzing tourist perception in historic urban quarters using multimodal data from social media. Applied to twelve historic quarters in central Shanghai, the framework integrates focal point extraction, color theme analysis, and sentiment mining. Visual focus areas are identified from tourist-shared photos using a fine-tuned semantic segmentation model. To assess aesthetic preferences, dominant colors are extracted using a clustering method, and their spatial distribution across quarters is analyzed. Color themes are further compared between social media photos and real-world street views, revealing notable shifts. This divergence highlights potential gaps between visual expectations and the built environment, reflecting both stylistic preferences and perceptual bias. Tourist reviews are evaluated through a hybrid sentiment analysis approach combining a rule-based method and a multi-task BERT model. Satisfaction is assessed across four dimensions: tourist activities, built environment, service facilities, and business formats. The results reveal spatial variations in aesthetic appeal and emotional response. Rather than focusing on a single technical innovation, this framework offers an integrated, data-driven approach to decoding tourist perception and contributes to informed decision-making in tourism, heritage conservation, and the design of aesthetically engaging public spaces.
Via

Sep 03, 2025
Abstract:Accurate identification of interactions between protein residues and ligand functional groups is essential to understand molecular recognition and guide rational drug design. Existing deep learning approaches for protein-ligand interpretability often rely on 3D structural input or use distance-based contact labels, limiting both their applicability and biological relevance. We introduce LINKER, the first sequence-based model to predict residue-functional group interactions in terms of biologically defined interaction types, using only protein sequences and the ligand SMILES as input. LINKER is trained with structure-supervised attention, where interaction labels are derived from 3D protein-ligand complexes via functional group-based motif extraction. By abstracting ligand structures into functional groups, the model focuses on chemically meaningful substructures while predicting interaction types rather than mere spatial proximity. Crucially, LINKER requires only sequence-level input at inference time, enabling large-scale application in settings where structural data is unavailable. Experiments on the LP-PDBBind benchmark demonstrate that structure-informed supervision over functional group abstractions yields interaction predictions closely aligned with ground-truth biochemical annotations.
Via

Aug 28, 2025
Abstract:Focusing on the development of an end-to-end autonomous vehicle model with pixel-to-pixel context awareness, this research proposes the SKGE-Swin architecture. This architecture utilizes the Swin Transformer with a skip-stage mechanism to broaden feature representation globally and at various network levels. This approach enables the model to extract information from distant pixels by leveraging the Swin Transformer's Shifted Window-based Multi-head Self-Attention (SW-MSA) mechanism and to retain critical information from the initial to the final stages of feature extraction, thereby enhancing its capability to comprehend complex patterns in the vehicle's surroundings. The model is evaluated on the CARLA platform using adversarial scenarios to simulate real-world conditions. Experimental results demonstrate that the SKGE-Swin architecture achieves a superior Driving Score compared to previous methods. Furthermore, an ablation study will be conducted to evaluate the contribution of each architectural component, including the influence of skip connections and the use of the Swin Transformer, in improving model performance.
* keywords-multitask learning, autonomous driving, end-to-end learning,
skip connections, swin transformer, self-attention mechanism. 12 pages
Via

Aug 26, 2025
Abstract:This study explores three approaches to processing table data in scientific papers to enhance extractive question answering and develop a software tool for the systematic review process. The methods evaluated include: (1) Optical Character Recognition (OCR) for extracting information from documents, (2) Pre-trained models for document visual question answering, and (3) Table detection and structure recognition to extract and merge key information from tables with textual content to answer extractive questions. In exploratory experiments, we augmented ten sample test documents containing tables and relevant content against RF- EMF-related scientific papers with seven predefined extractive question-answer pairs. The results indicate that approaches preserving table structure outperform the others, particularly in representing and organizing table content. Accurately recognizing specific notations and symbols within the documents emerged as a critical factor for improved results. Our study concludes that preserving the structural integrity of tables is essential for enhancing the accuracy and reliability of extractive question answering in scientific documents.
* Proceedings of the ACM International Conference on Research in
Adaptive and Convergent Systems (RACS 24), November 5-8, 2024, Pompei, Italy.
ACM
* Accepted at ACM International Conference on Research in Adaptive and
Convergent Systems, November 5-8, 2024, Pompei, Italy
Via
