Distributional shifts between training and inference time data remain a central challenge in machine learning, often leading to poor performance. It motivated the study of principled approaches for domain alignment, such as optimal transport based unsupervised domain adaptation, that relies on approximating Monge map using transport plans, which is sensitive to the transport problem regularization strategy and hyperparameters, and might yield biased domains alignment. In this work, we propose to interpret smoothed transport plans as adjacency matrices of bipartite graphs connecting source to target domain and derive domain-invariant samples' representations through spectral embedding. We evaluate our approach on acoustic adaptation benchmarks for music genre recognition, music-speech discrimination, as well as electrical cable defect detection and classification tasks using time domain reflection in different diagnosis settings, achieving overall strong performances.
We introduce UNMIXX, a novel framework for multiple singing voices separation (MSVS). While related to speech separation, MSVS faces unique challenges: data scarcity and the highly correlated nature of singing voices mixture. To address these issues, we propose UNMIXX with three key components: (1) musically informed mixing strategy to construct highly correlated, music-like mixtures, (2) cross-source attention that drives representations of two singers apart via reverse attention, and (3) magnitude penalty loss penalizing erroneously assigned interfering energy. UNMIXX not only addresses data scarcity by simulating realistic training data, but also excels at separating highly correlated mixtures through cross-source interactions at both the architectural and loss levels. Our extensive experiments demonstrate that UNMIXX greatly enhances performance, with SDRi gains exceeding 2.2 dB over prior work.
Dialectal Arabic (DA) speech data vary widely in domain coverage, dialect labeling practices, and recording conditions, complicating cross-dataset comparison and model evaluation. To characterize this landscape, we conduct a computational analysis of linguistic ``dialectness'' alongside objective proxies of audio quality on the training splits of widely used DA corpora. We find substantial heterogeneity both in acoustic conditions and in the strength and consistency of dialectal signals across datasets, underscoring the need for standardized characterization beyond coarse labels. To reduce fragmentation and support reproducible evaluation, we introduce Arab Voices, a standardized framework for DA ASR. Arab Voices provides unified access to 31 datasets spanning 14 dialects, with harmonized metadata and evaluation utilities. We further benchmark a range of recent ASR systems, establishing strong baselines for modern DA ASR.
Speaker anonymization aims to conceal a speaker's identity, without considering the linguistic content. In this study, we reveal a weakness of Librispeech, the dataset that is commonly used to evaluate anonymizers: the books read by the Librispeech speakers are so distinct, that speakers can be identified by their vocabularies. Even perfect anonymizers cannot prevent this identity leakage. The EdAcc dataset is better in this regard: only a few speakers can be identified through their vocabularies, encouraging the attacker to look elsewhere for the identities of the anonymized speakers. EdAcc also comprises spontaneous speech and more diverse speakers, complementing Librispeech and giving more insights into how anonymizers work.
Large encoder-decoder models like Whisper achieve strong offline transcription but remain impractical for streaming applications due to high latency. However, due to the accessibility of pre-trained checkpoints, the open Thai ASR landscape remains dominated by these offline architectures, leaving a critical gap in efficient streaming solutions. We present Typhoon ASR Real-time, a 115M-parameter FastConformer-Transducer model for low-latency Thai speech recognition. We demonstrate that rigorous text normalization can match the impact of model scaling: our compact model achieves a 45x reduction in computational cost compared to Whisper Large-v3 while delivering comparable accuracy. Our normalization pipeline resolves systemic ambiguities in Thai transcription --including context-dependent number verbalization and repetition markers (mai yamok) --creating consistent training targets. We further introduce a two-stage curriculum learning approach for Isan (north-eastern) dialect adaptation that preserves Central Thai performance. To address reproducibility challenges in Thai ASR, we release the Typhoon ASR Benchmark, a gold-standard human-labeled datasets with transcriptions following established Thai linguistic conventions, providing standardized evaluation protocols for the research community.
Technological advances in the Internet and online social networks have brought many benefits to humanity. At the same time, this growth has led to an increase in hate speech, the main global threat. To improve the reliability of black-box models used for hate speech detection, post-hoc approaches such as LIME, SHAP, and LRP provide the explanation after training the classification model. In contrast, multi-task approaches based on the HateXplain benchmark learn to explain and classify simultaneously. However, results from HateXplain-based algorithms show that predicted attention varies considerably when it should be constant. This attention variability can lead to inconsistent interpretations, instability of predictions, and learning difficulties. To solve this problem, we propose the BiAtt-BiRNN-HateXplain (Bidirectional Attention BiRNN HateXplain) model which is easier to explain compared to LLMs which are more complex in view of the need for transparency, and will take into account the sequential aspect of the input data during explainability thanks to a BiRNN layer. Thus, if the explanation is correctly estimated, thanks to multi-task learning (explainability and classification task), the model could classify better and commit fewer unintentional bias errors related to communities. The experimental results on HateXplain data show a clear improvement in detection performance, explainability and a reduction in unintentional bias.
The Lombard effect plays a key role in natural communication, particularly in noisy environments or when addressing hearing-impaired listeners. We present a controllable text-to-speech (TTS) system capable of synthesizing Lombard speech for any speaker without requiring explicit Lombard data during training. Our approach leverages style embeddings learned from a large, prosodically diverse dataset and analyzes their correlation with Lombard attributes using principal component analysis (PCA). By shifting the relevant PCA components, we manipulate the style embeddings and incorporate them into our TTS model to generate speech at desired Lombard levels. Evaluations demonstrate that our method preserves naturalness and speaker identity, enhances intelligibility under noise, and provides fine-grained control over prosody, offering a robust solution for controllable Lombard TTS for any speaker.
Speech-Preserving Facial Expression Manipulation (SPFEM) is an innovative technique aimed at altering facial expressions in images and videos while retaining the original mouth movements. Despite advancements, SPFEM still struggles with accurate lip synchronization due to the complex interplay between facial expressions and mouth shapes. Capitalizing on the advanced capabilities of audio-driven talking head generation (AD-THG) models in synthesizing precise lip movements, our research introduces a novel integration of these models with SPFEM. We present a new framework, Talking Head Facial Expression Manipulation (THFEM), which utilizes AD-THG models to generate frames with accurately synchronized lip movements from audio inputs and SPFEM-altered images. However, increasing the number of frames generated by AD-THG models tends to compromise the realism and expression fidelity of the images. To counter this, we develop an adjacent frame learning strategy that finetunes AD-THG models to predict sequences of consecutive frames. This strategy enables the models to incorporate information from neighboring frames, significantly improving image quality during testing. Our extensive experimental evaluations demonstrate that this framework effectively preserves mouth shapes during expression manipulations, highlighting the substantial benefits of integrating AD-THG with SPFEM.
Deep Brain Stimulation (DBS) has proven to be a promising treatment of Parkinson's Disease (PD). DBS involves stimulating specific regions of the brain's Basal Ganglia (BG) using electric impulses to alleviate symptoms of PD such as tremors, rigidity, and bradykinesia. Although most clinical DBS approaches today use a fixed frequency and amplitude, they suffer from side effects (such as slurring of speech) and shortened battery life of the implant. Reinforcement learning (RL) approaches have been used in recent research to perform DBS in a more adaptive manner to improve overall patient outcome. These RL algorithms are, however, too complex to be trained in vivo due to their long convergence time and requirement of high computational resources. We propose a new Time & Threshold-Triggered Multi-Armed Bandit (T3P MAB) RL approach for DBS that is more effective than existing algorithms. Further, our T3P agent is lightweight enough to be deployed in the implant, unlike current deep-RL strategies, and even forgoes the need for an offline training phase. Additionally, most existing RL approaches have focused on modulating only frequency or amplitude, and the possibility of tuning them together remains greatly unexplored in the literature. Our RL agent can tune both frequency and amplitude of DBS signals to the brain with better sample efficiency and requires minimal time to converge. We implement an MAB agent for DBS for the first time on hardware to report energy measurements and prove its suitability for resource-constrained platforms. Our T3P MAB algorithm is deployed on a variety of microcontroller unit (MCU) setups to show its efficiency in terms of power consumption as opposed to other existing RL approaches used in recent work.
Online blind source separation is essential for both speech communication and human-machine interaction. Among existing approaches, overdetermined independent vector analysis (OverIVA) delivers strong performance by exploiting the statistical independence of source signals and the orthogonality between source and noise subspaces. However, when applied to large microphone arrays, the number of parameters grows rapidly, which can degrade online estimation accuracy. To overcome this challenge, we propose decomposing each long separation filter into a bilinear form of two shorter filters, thereby reducing the number of parameters. Because the two filters are closely coupled, we design an alternating iterative projection algorithm to update them in turn. Simulation results show that, with far fewer parameters, the proposed method achieves improved performance and robustness.