Abstract:Video-to-Audio generation has made remarkable strides in automatically synthesizing sound for video. However, existing evaluation metrics, which focus on semantic and temporal alignment, overlook a critical failure mode: models often generate acoustic events, particularly speech and music, that have no corresponding visual source. We term this phenomenon Insertion Hallucination and identify it as a systemic risk driven by dataset biases, such as the prevalence of off-screen sounds, that remains completely undetected by current metrics. To address this challenge, we first develop a systematic evaluation framework that employs a majority-voting ensemble of multiple audio event detectors. We also introduce two novel metrics to quantify the prevalence and severity of this issue: IH@vid (the fraction of videos with hallucinations) and IH@dur (the fraction of hallucinated duration). Building on this, we propose Posterior Feature Correction, a novel training-free inference-time method that mitigates IH. PFC operates in a two-pass process: it first generates an initial audio output to detect hallucinated segments, and then regenerates the audio after masking the corresponding video features at those timestamps. Experiments on several mainstream V2A benchmarks first reveal that state-of-the-art models suffer from severe IH. In contrast, our PFC method reduces both the prevalence and duration of hallucinations by over 50\% on average, without degrading, and in some cases even improving, conventional metrics for audio quality and temporal synchronization. Our work is the first to formally define, systematically measure, and effectively mitigate Insertion Hallucination, paving the way for more reliable and faithful V2A models.
Abstract:Text-to-Image (T2I) has been prevalent in recent years, with most common condition tasks having been optimized nicely. Besides, counterfactual Text-to-Image is obstructing us from a more versatile AIGC experience. For those scenes that are impossible to happen in real world and anti-physics, we should spare no efforts in increasing the factual feel, which means synthesizing images that people think very likely to be happening, and concept alignment, which means all the required objects should be in the same frame. In this paper, we focus on concept alignment. As controllable T2I models have achieved satisfactory performance for real applications, we utilize this technology to replace the objects in a synthesized image in latent space step-by-step to change the image from a common scene to a counterfactual scene to meet the prompt. We propose a strategy to instruct this replacing process, which is called as Explicit Logical Narrative Prompt (ELNP), by using the newly SoTA language model DeepSeek to generate the instructions. Furthermore, to evaluate models' performance in counterfactual T2I, we design a metric to calculate how many required concepts in the prompt can be covered averagely in the synthesized images. The extensive experiments and qualitative comparisons demonstrate that our strategy can boost the concept alignment in counterfactual T2I.