Topic:Multimodal Machine Translation
What is Multimodal Machine Translation? Multimodal machine translation is the task of doing machine translation with multiple data sources—for example, translating a sentence 'a bird is flying over water' along with an image of a bird over water to German text.
Papers and Code
Sep 30, 2024
Abstract:Cross-lingual cross-modal retrieval (CCR) aims to retrieve visually relevant content based on non-English queries, without relying on human-labeled cross-modal data pairs during training. One popular approach involves utilizing machine translation (MT) to create pseudo-parallel data pairs, establishing correspondence between visual and non-English textual data. However, aligning their representations poses challenges due to the significant semantic gap between vision and text, as well as the lower quality of non-English representations caused by pre-trained encoders and data noise. To overcome these challenges, we propose LECCR, a novel solution that incorporates the multi-modal large language model (MLLM) to improve the alignment between visual and non-English representations. Specifically, we first employ MLLM to generate detailed visual content descriptions and aggregate them into multi-view semantic slots that encapsulate different semantics. Then, we take these semantic slots as internal features and leverage them to interact with the visual features. By doing so, we enhance the semantic information within the visual features, narrowing the semantic gap between modalities and generating local visual semantics for subsequent multi-level matching. Additionally, to further enhance the alignment between visual and non-English features, we introduce softened matching under English guidance. This approach provides more comprehensive and reliable inter-modal correspondences between visual and non-English features. Extensive experiments on four CCR benchmarks, \ie Multi30K, MSCOCO, VATEX, and MSR-VTT-CN, demonstrate the effectiveness of our proposed method. Code: \url{https://github.com/LiJiaBei-7/leccr}.
* Accepted by ACM Multimedia
Via

Apr 09, 2024
Abstract:Recent research in the field of multimodal machine translation (MMT) has indicated that the visual modality is either dispensable or offers only marginal advantages. However, most of these conclusions are drawn from the analysis of experimental results based on a limited set of bilingual sentence-image pairs, such as Multi30k. In these kinds of datasets, the content of one bilingual parallel sentence pair must be well represented by a manually annotated image, which is different from the real-world translation scenario. In this work, we adhere to the universal multimodal machine translation framework proposed by Tang et al. (2022). This approach allows us to delve into the impact of the visual modality on translation efficacy by leveraging real-world translation datasets. Through a comprehensive exploration via probing tasks, we find that the visual modality proves advantageous for the majority of authentic translation datasets. Notably, the translation performance primarily hinges on the alignment and coherence between textual and visual contents. Furthermore, our results suggest that visual information serves a supplementary role in multimodal translation and can be substituted.
* bucc 2024 accepted
Via

Apr 29, 2024
Abstract:Multimodal machine translation (MMT) is a challenging task that seeks to improve translation quality by incorporating visual information. However, recent studies have indicated that the visual information provided by existing MMT datasets is insufficient, causing models to disregard it and overestimate their capabilities. This issue presents a significant obstacle to the development of MMT research. This paper presents a novel solution to this issue by introducing 3AM, an ambiguity-aware MMT dataset comprising 26,000 parallel sentence pairs in English and Chinese, each with corresponding images. Our dataset is specifically designed to include more ambiguity and a greater variety of both captions and images than other MMT datasets. We utilize a word sense disambiguation model to select ambiguous data from vision-and-language datasets, resulting in a more challenging dataset. We further benchmark several state-of-the-art MMT models on our proposed dataset. Experimental results show that MMT models trained on our dataset exhibit a greater ability to exploit visual information than those trained on other MMT datasets. Our work provides a valuable resource for researchers in the field of multimodal learning and encourages further exploration in this area. The data, code and scripts are freely available at https://github.com/MaxyLee/3AM.
Via

Aug 25, 2024
Abstract:This research explores the development of multimodal vision-language models for image retrieval in low-resource languages, specifically Azerbaijani. Existing vision-language models primarily support high-resource languages, and fine-tuning them remains computationally demanding. To address challenges in vision-language retrieval for low-resource languages, we integrated the CLIP model architecture and employed several techniques to balance computational efficiency with performance. These techniques include synthetic data generation through machine translation, image augmentation, and further training the attention mechanisms of transformer-based models with domain-specific data. We integrated Multilingual BERT as a text encoder with image encoders like ResNet50, EfficientNet0, Vision Transformer (ViT), and Tiny Swin Transformer. Our study found that models like EfficientNet0 and Tiny Swin Transformer perform best on the datasets they were trained on, such as COCO, Flickr30k, and Flickr8k. Augmentation techniques boosted EfficientNet0 MAP on Flickr30k from 0.84 to 0.87 and ResNet50 MAP on MSCOCO from 0.70 to 0.80, contributing to a new state of the art in vision-language retrieval. We share our configurations and results to support further research. Code and pre-trained models are available at https://github.com/aliasgerovs/azclip.
Via

Mar 05, 2024
Abstract:The challenge of visual grounding and masking in multimodal machine translation (MMT) systems has encouraged varying approaches to the detection and selection of visually-grounded text tokens for masking. We introduce new methods for detection of visually and contextually relevant (concrete) tokens from source sentences, including detection with natural language processing (NLP), detection with object detection, and a joint detection-verification technique. We also introduce new methods for selection of detected tokens, including shortest $n$ tokens, longest $n$ tokens, and all detected concrete tokens. We utilize the GRAM MMT architecture to train models against synthetically collated multimodal datasets of source images with masked sentences, showing performance improvements and improved usage of visual context during translation tasks over the baseline model.
Via

Sep 17, 2024
Abstract:Recent advances in large language models (LLMs) have gained interest in speech-text multimodal foundation models, achieving strong performance on instruction-based speech translation (ST). However, expanding language pairs from an existing instruction-tuned ST system is costly due to the necessity of re-training on a combination of new and previous datasets. We propose to expand new language pairs by merging the model trained on new language pairs and the existing model, using task arithmetic. We find that the direct application of task arithmetic for ST causes the merged model to fail to follow instructions; thus, generating translation in incorrect languages. To eliminate language confusion, we propose an augmented task arithmetic method that merges an additional language control model. It is trained to generate the correct target language token following the instructions. Our experiments demonstrate that our proposed language control model can achieve language expansion by eliminating language confusion. In our MuST-C and CoVoST-2 experiments, it shows up to 4.66 and 4.92 BLEU scores improvement, respectively. In addition, we demonstrate the use of our task arithmetic framework can expand to a language pair where neither paired ST training data nor a pre-trained ST model is available. We first synthesize the ST system from machine translation (MT) systems via task analogy, then merge the synthesized ST system to the existing ST model.
Via

Aug 24, 2024
Abstract:Sign language translation has historically been peripheral to mainstream machine translation research. In order to help converge the fields, we introduce FLEURS-ASL, an extension of the multiway parallel benchmarks FLORES (for text) and FLEURS (for speech) to support their first sign language (as video), American Sign Language, translated by 5 Certified Deaf Interpreters. FLEURS-ASL can be used to evaluate a variety of tasks -- primarily sentence- and discourse-level translation -- between ASL and 200 other languages as text, or 102 languages as speech. We provide baselines for tasks from ASL to English text using a unified modeling approach that incorporates timestamp tokens and previous text tokens in a 34-second context window, trained on random video clips from YouTube-ASL. This model meets or exceeds the performance of phrase-level baselines while supporting a multitude of new tasks. We also use FLEURS-ASL to show that multimodal frontier models have virtually no understanding of ASL, underscoring the importance of including sign languages in standard evaluation suites.
Via

Aug 21, 2024
Abstract:Recent advancements in NLP have resulted in models with specialized strengths, such as processing multimodal inputs or excelling in specific domains. However, real-world tasks, like multimodal translation, often require a combination of these strengths, such as handling both translation and image processing. While individual translation and vision models are powerful, they typically lack the ability to perform both tasks in a single system. Combining these models poses challenges, particularly due to differences in their vocabularies, which limit the effectiveness of traditional ensemble methods to post-generation techniques like N-best list re-ranking. In this work, we propose a novel zero-shot ensembling strategy that allows for the integration of different models during the decoding phase without the need for additional training. Our approach re-ranks beams during decoding by combining scores at the word level, using heuristics to predict when a word is completed. We demonstrate the effectiveness of this method in machine translation scenarios, showing that it enables the generation of translations that are both speech- and image-aware while also improving overall translation quality\footnote{We will release the code upon paper acceptance.}.
* Under Review
Via

Jun 04, 2024
Abstract:SoftMax is a ubiquitous ingredient of modern machine learning algorithms. It maps an input vector onto a probability simplex and reweights the input by concentrating the probability mass at large entries. Yet, as a smooth approximation to the Argmax function, a significant amount of probability mass is distributed to other, residual entries, leading to poor interpretability and noise. Although sparsity can be achieved by a family of SoftMax variants, they often require an alternative loss function and do not preserve multi-modality. We show that this trade-off between multi-modality and sparsity limits the expressivity of SoftMax as well as its variants. We provide a solution to this tension between objectives by proposing a piece-wise differentiable function, termed MultiMax, which adaptively modulates the output distribution according to input entry range. Through comprehensive analysis and evaluation, we show that MultiMax successfully produces a distribution that supresses irrelevant entries while preserving multimodality, with benefits in image classification, language modeling and machine translation. The code is available at https://github.com/ZhouYuxuanYX/MultiMax.
* Accepted at ICML 2024
Via

Mar 05, 2024
Abstract:While most current work in multimodal machine translation (MMT) uses the Multi30k dataset for training and evaluation, we find that the resulting models overfit to the Multi30k dataset to an extreme degree. Consequently, these models perform very badly when evaluated against typical text-only testing sets such as the WMT newstest datasets. In order to perform well on both Multi30k and typical text-only datasets, we use a performant text-only machine translation (MT) model as the starting point of our MMT model. We add vision-text adapter layers connected via gating mechanisms to the MT model, and incrementally transform the MT model into an MMT model by 1) pre-training using vision-based masking of the source text and 2) fine-tuning on Multi30k.
Via
