Abstract:Reinforcement learning (RL) has demonstrated impressive performance in legged locomotion over various challenging environments. However, due to the sim-to-real gap and lack of explainability, unconstrained RL policies deployed in the real world still suffer from inevitable safety issues, such as joint collisions, excessive torque, or foot slippage in low-friction environments. These problems limit its usage in missions with strict safety requirements, such as planetary exploration, nuclear facility inspection, and deep-sea operations. In this paper, we design a hierarchical optimization-based whole-body follower, which integrates both hard and soft constraints into RL framework to make the robot move with better safety guarantees. Leveraging the advantages of model-based control, our approach allows for the definition of various types of hard and soft constraints during training or deployment, which allows for policy fine-tuning and mitigates the challenges of sim-to-real transfer. Meanwhile, it preserves the robustness of RL when dealing with locomotion in complex unstructured environments. The trained policy with introduced constraints was deployed in a hexapod robot and tested in various outdoor environments, including snow-covered slopes and stairs, demonstrating the great traversability and safety of our approach.
Abstract:We introduce AMIA, a lightweight, inference-only defense for Large Vision-Language Models (LVLMs) that (1) Automatically Masks a small set of text-irrelevant image patches to disrupt adversarial perturbations, and (2) conducts joint Intention Analysis to uncover and mitigate hidden harmful intents before response generation. Without any retraining, AMIA improves defense success rates across diverse LVLMs and jailbreak benchmarks from an average of 52.4% to 81.7%, preserves general utility with only a 2% average accuracy drop, and incurs only modest inference overhead. Ablation confirms both masking and intention analysis are essential for a robust safety-utility trade-off.
Abstract:Reasoning Large Language Models (RLLMs) have demonstrated impressive performance on complex tasks, largely due to the adoption of Long Chain-of-Thought (Long CoT) reasoning. However, they often exhibit overthinking -- performing unnecessary reasoning steps even after arriving at the correct answer. Prior work has largely focused on qualitative analyses of overthinking through sample-based observations of long CoTs. In contrast, we present a quantitative analysis of overthinking from the perspective of self-doubt, characterized by excessive token usage devoted to re-verifying already-correct answer. We find that self-doubt significantly contributes to overthinking. In response, we introduce a simple and effective prompting method to reduce the model's over-reliance on input questions, thereby avoiding self-doubt. Specifically, we first prompt the model to question the validity of the input question, and then respond concisely based on the outcome of that evaluation. Experiments on three mathematical reasoning tasks and four datasets with missing premises demonstrate that our method substantially reduces answer length and yields significant improvements across nearly all datasets upon 4 widely-used RLLMs. Further analysis demonstrates that our method effectively minimizes the number of reasoning steps and reduces self-doubt.
Abstract:Domain-specific instruction-tuning has become the defacto standard for improving the performance of large language models (LLMs) in specialized applications, e.g., medical question answering. Since the instruction-tuning dataset might contain redundant or low-quality data, data selection (DS) is usually required to maximize the data efficiency. Despite the successes in the general domain, current DS methods often struggle to select the desired data for domain-specific instruction-tuning. One of the main reasons is that they neglect the impact of knowledge conflicts, i.e., the discrepancy between LLMs' pretrained knowledge and context knowledge of instruction data, which could damage LLMs' prior abilities and lead to hallucination. To this end, we propose a simple-yet-effective Knowledge-aware Data Selection (namely KDS) framework to select the domain-specific instruction-tuning data that meets LLMs' actual needs. The core of KDS is to leverage two knowledge-aware metrics for quantitatively measuring knowledge conflicts from two aspects: context-memory knowledge alignment and intra-memory knowledge consistency. By filtering the data with large knowledge conflicts and sampling the high-quality and diverse data, KDS can effectively stimulate the LLMs' abilities and achieve better domain-specific performance. Taking the medical domain as the testbed, we conduct extensive experiments and empirically prove that KDS surpasses the other baselines and brings significant and consistent performance gains among all LLMs. More encouragingly, KDS effectively improves the model generalization and alleviates the hallucination problem.
Abstract:Agents powered by large language models (LLMs) have demonstrated strong planning and decision-making capabilities in complex embodied environments. However, such agents often suffer from inefficiencies in multi-turn interactions, frequently trapped in repetitive loops or issuing ineffective commands, leading to redundant computational overhead. Instead of relying solely on learning from trajectories, we take a first step toward exploring the early-exit behavior for LLM-based agents. We propose two complementary approaches: 1. an $\textbf{intrinsic}$ method that injects exit instructions during generation, and 2. an $\textbf{extrinsic}$ method that verifies task completion to determine when to halt an agent's trial. To evaluate early-exit mechanisms, we introduce two metrics: one measures the reduction of $\textbf{redundant steps}$ as a positive effect, and the other evaluates $\textbf{progress degradation}$ as a negative effect. Experiments with 4 different LLMs across 5 embodied environments show significant efficiency improvements, with only minor drops in agent performance. We also validate a practical strategy where a stronger agent assists after an early-exit agent, achieving better performance with the same total steps. We will release our code to support further research.
Abstract:Supervised fine-tuning (SFT) is a common approach to improve the domain-specific question-answering (QA) performance of large language models (LLMs). However, recent literature reveals that due to the conflicts between LLMs' internal knowledge and the context knowledge of training data, vanilla SFT using the full QA training set is usually suboptimal. In this paper, we first design a query diversification strategy for robust conflict detection and then conduct a series of experiments to analyze the impact of knowledge conflict. We find that 1) training samples with varied conflicts contribute differently, where SFT on the data with large conflicts leads to catastrophic performance drops; 2) compared to directly filtering out the conflict data, appropriately applying the conflict data would be more beneficial. Motivated by this, we propose a simple-yet-effective Knowledge-aware Fine-tuning (namely KaFT) approach to effectively boost LLMs' performance. The core of KaFT is to adapt the training weight by assigning different rewards for different training samples according to conflict level. Extensive experiments show that KaFT brings consistent and significant improvements across four LLMs. More analyses prove that KaFT effectively improves the model generalization and alleviates the hallucination.
Abstract:Detoxifying offensive language while preserving the speaker's original intent is a challenging yet critical goal for improving the quality of online interactions. Although large language models (LLMs) show promise in rewriting toxic content, they often default to overly polite rewrites, distorting the emotional tone and communicative intent. This problem is especially acute in Chinese, where toxicity often arises implicitly through emojis, homophones, or discourse context. We present ToxiRewriteCN, the first Chinese detoxification dataset explicitly designed to preserve sentiment polarity. The dataset comprises 1,556 carefully annotated triplets, each containing a toxic sentence, a sentiment-aligned non-toxic rewrite, and labeled toxic spans. It covers five real-world scenarios: standard expressions, emoji-induced and homophonic toxicity, as well as single-turn and multi-turn dialogues. We evaluate 17 LLMs, including commercial and open-source models with variant architectures, across four dimensions: detoxification accuracy, fluency, content preservation, and sentiment polarity. Results show that while commercial and MoE models perform best overall, all models struggle to balance safety with emotional fidelity in more subtle or context-heavy settings such as emoji, homophone, and dialogue-based inputs. We release ToxiRewriteCN to support future research on controllable, sentiment-aware detoxification for Chinese.
Abstract:The rapid development of Large Language Models (LLMs) has intensified concerns about content traceability and potential misuse. Existing watermarking schemes for sampled text often face trade-offs between maintaining text quality and ensuring robust detection against various attacks. To address these issues, we propose a novel watermarking scheme that improves both detectability and text quality by introducing a cumulative watermark entropy threshold. Our approach is compatible with and generalizes existing sampling functions, enhancing adaptability. Experimental results across multiple LLMs show that our scheme significantly outperforms existing methods, achieving over 80\% improvements on widely-used datasets, e.g., MATH and GSM8K, while maintaining high detection accuracy.
Abstract:Recent advancements in Large Vision-Language Models have showcased remarkable capabilities. However, they often falter when confronted with complex reasoning tasks that humans typically address through visual aids and deliberate, step-by-step thinking. While existing methods have explored text-based slow thinking or rudimentary visual assistance, they fall short of capturing the intricate, interleaved nature of human visual-verbal reasoning processes. To overcome these limitations and inspired by the mechanisms of slow thinking in human cognition, we introduce VisuoThink, a novel framework that seamlessly integrates visuospatial and linguistic domains. VisuoThink facilitates multimodal slow thinking by enabling progressive visual-textual reasoning and incorporates test-time scaling through look-ahead tree search. Extensive experiments demonstrate that VisuoThink significantly enhances reasoning capabilities via inference-time scaling, even without fine-tuning, achieving state-of-the-art performance in tasks involving geometry and spatial reasoning.
Abstract:Multi-agent systems (MAS) based on large language models (LLMs) have demonstrated significant potential in collaborative problem-solving. However, they still face substantial challenges of low communication efficiency and suboptimal task performance, making the careful design of the agents' communication topologies particularly important. Inspired by the management theory that roles in an efficient team are often dynamically adjusted, we propose AgentDropout, which identifies redundant agents and communication across different communication rounds by optimizing the adjacency matrices of the communication graphs and eliminates them to enhance both token efficiency and task performance. Compared to state-of-the-art methods, AgentDropout achieves an average reduction of 21.6% in prompt token consumption and 18.4% in completion token consumption, along with a performance improvement of 1.14 on the tasks. Furthermore, the extended experiments demonstrate that AgentDropout achieves notable domain transferability and structure robustness, revealing its reliability and effectiveness. We release our code at https://github.com/wangzx1219/AgentDropout.