Understanding how the human brain progresses from processing simple linguistic inputs to performing high-level reasoning is a fundamental challenge in neuroscience. While modern large language models (LLMs) are increasingly used to model neural responses to language, their internal representations are highly "entangled," mixing information about lexicon, syntax, meaning, and reasoning. This entanglement biases conventional brain encoding analyses toward linguistically shallow features (e.g., lexicon and syntax), making it difficult to isolate the neural substrates of cognitively deeper processes. Here, we introduce a residual disentanglement method that computationally isolates these components. By first probing an LM to identify feature-specific layers, our method iteratively regresses out lower-level representations to produce four nearly orthogonal embeddings for lexicon, syntax, meaning, and, critically, reasoning. We used these disentangled embeddings to model intracranial (ECoG) brain recordings from neurosurgical patients listening to natural speech. We show that: 1) This isolated reasoning embedding exhibits unique predictive power, accounting for variance in neural activity not explained by other linguistic features and even extending to the recruitment of visual regions beyond classical language areas. 2) The neural signature for reasoning is temporally distinct, peaking later (~350-400ms) than signals related to lexicon, syntax, and meaning, consistent with its position atop a processing hierarchy. 3) Standard, non-disentangled LLM embeddings can be misleading, as their predictive success is primarily attributable to linguistically shallow features, masking the more subtle contributions of deeper cognitive processing.
How much audio is needed to fully observe a multilingual ASR model's learned sub-token inventory across languages, and does data disparity in multilingual pre-training affect how these tokens are utilized during inference? We address this question by analyzing Whisper's decoding behavior during inference across 49 languages. By logging decoding candidate sub-tokens and tracking their cumulative discovery over time, we study the utilization pattern of the model's sub-token space. Results show that the total number of discovered tokens remains largely independent of a language's pre-training hours, indicating that data disparity does not strongly influence lexical diversity in the model's hypothesis space. Sub-token discovery rates follow a consistent exponential saturation pattern across languages, suggesting a stable time window after which additional audio yields minimal new sub-token activation. We refer to this convergence threshold as acoustic saturation time (AST). Further analyses of rank-frequency distributions reveal Zipf-like patterns better modeled by a Zipf-Mandelbrot law, and mean sub-token length shows a positive correlation with resource level. Additionally, those metrics show more favorable patterns for languages in the Latin script than those in scripts such as Cyrillic, CJK, and Semitic. Together, our study suggests that sub-token utilization during multilingual ASR inference is constrained more by the statistical, typological, and orthographic structure of the speech than by training data scale, providing an empirical basis for more equitable corpus construction and cross-lingual evaluation.
User behavior on online platforms is evolving, reflecting real-world changes in how people post, whether it's helpful messages or hate speech. Models that learn to capture this content can experience a decrease in performance over time due to data drift, which can lead to ineffective behavioral analytics systems. However, fine-tuning such a model over time with new data can be detrimental due to catastrophic forgetting. Replay-based approaches in continual learning offer a simple yet efficient method to update such models, minimizing forgetting by maintaining a buffer of important training instances from past learned tasks. However, the main limitation of this approach is the fixed size of the buffer. External knowledge bases can be utilized to overcome this limitation through data augmentation. We propose a novel augmentation-based approach to incorporate external knowledge in the replay-based continual learning framework. We evaluate several strategies with three datasets from prior studies related to deviant behavior classification to assess the integration of external knowledge in continual learning and demonstrate that augmentation helps outperform baseline replay-based approaches.
Speech separation and enhancement (SSE) has advanced remarkably and achieved promising results in controlled settings, such as a fixed number of speakers and a fixed array configuration. Towards a universal SSE system, single-channel systems have been extended to deal with a variable number of speakers (i.e., outputs). Meanwhile, multi-channel systems accommodating various array configurations (i.e., inputs) have been developed. However, these attempts have been pursued separately. In this paper, we propose a flexible input and output SSE system, named FlexIO. It performs conditional separation using prompt vectors, one per speaker as a condition, allowing separation of an arbitrary number of speakers. Multi-channel mixtures are processed together with the prompt vectors via an array-agnostic channel communication mechanism. Our experiments demonstrate that FlexIO successfully covers diverse conditions with one to five microphones and one to three speakers. We also confirm the robustness of FlexIO on CHiME-4 real data.
Foley Control is a lightweight approach to video-guided Foley that keeps pretrained single-modality models frozen and learns only a small cross-attention bridge between them. We connect V-JEPA2 video embeddings to a frozen Stable Audio Open DiT text-to-audio (T2A) model by inserting compact video cross-attention after the model's existing text cross-attention, so prompts set global semantics while video refines timing and local dynamics. The frozen backbones retain strong marginals (video; audio given text) and the bridge learns the audio-video dependency needed for synchronization -- without retraining the audio prior. To cut memory and stabilize training, we pool video tokens before conditioning. On curated video-audio benchmarks, Foley Control delivers competitive temporal and semantic alignment with far fewer trainable parameters than recent multi-modal systems, while preserving prompt-driven controllability and production-friendly modularity (swap/upgrade encoders or the T2A backbone without end-to-end retraining). Although we focus on Video-to-Foley, the same bridge design can potentially extend to other audio modalities (e.g., speech).
Pretrained language models are remarkably effective in aligning with human brain responses elicited by natural language stimuli, positioning them as promising model organisms for studying language processing in the brain. However, existing approaches for both estimating and improving this brain alignment are participant-dependent and highly affected by the amount of data available per participant, hindering both generalization to new participants and population-level analyses. In this work, we address these limitations by introducing a scalable, generalizable brain-tuning method, in which we fine-tune pretrained speech language models to jointly predict fMRI responses from multiple participants. We demonstrate that the resulting brain-tuned models exhibit strong individual brain alignment while generalizing across participants. Specifically, our method leads to 1) a 5-fold decrease in the amount of fMRI data needed to predict brain data from new participants, 2) up to a 50% increase in the overall brain alignment, and 3) strong generalization to new unseen datasets. Furthermore, this multi-participant brain-tuning additionally improves downstream performance on semantic tasks, suggesting that training using brain data from multiple participants leads to more generalizable semantic representations. Taken together, these findings demonstrate a bidirectional benefit between neuroscience and AI, helping bridge the gap between the two fields. We make our code and models publicly available at https://github.com/bridge-ai-neuro/multi-brain-tuning.
Brain-computer interfaces (BCIs) promise to enable vital functions, such as speech and prosthetic control, for individuals with neuromotor impairments. Central to their success are neural decoders, models that map neural activity to intended behavior. Current learning-based decoding approaches fall into two classes: simple, causal models that lack generalization, or complex, non-causal models that generalize and scale offline but struggle in real-time settings. Both face a common challenge, their reliance on power-hungry artificial neural network backbones, which makes integration into real-world, resource-limited systems difficult. Spiking neural networks (SNNs) offer a promising alternative. Because they operate causally these models are suitable for real-time use, and their low energy demands make them ideal for battery-constrained environments. To this end, we introduce Spikachu: a scalable, causal, and energy-efficient neural decoding framework based on SNNs. Our approach processes binned spikes directly by projecting them into a shared latent space, where spiking modules, adapted to the timing of the input, extract relevant features; these latent representations are then integrated and decoded to generate behavioral predictions. We evaluate our approach on 113 recording sessions from 6 non-human primates, totaling 43 hours of recordings. Our method outperforms causal baselines when trained on single sessions using between 2.26 and 418.81 times less energy. Furthermore, we demonstrate that scaling up training to multiple sessions and subjects improves performance and enables few-shot transfer to unseen sessions, subjects, and tasks. Overall, Spikachu introduces a scalable, online-compatible neural decoding framework based on SNNs, whose performance is competitive relative to state-of-the-art models while consuming orders of magnitude less energy.
Cantonese, although spoken by millions, remains under-resourced due to policy and diglossia. To address this scarcity of evaluation frameworks for Cantonese, we introduce \textsc{\textbf{CantoNLU}}, a benchmark for Cantonese natural language understanding (NLU). This novel benchmark spans seven tasks covering syntax and semantics, including word sense disambiguation, linguistic acceptability judgment, language detection, natural language inference, sentiment analysis, part-of-speech tagging, and dependency parsing. In addition to the benchmark, we provide model baseline performance across a set of models: a Mandarin model without Cantonese training, two Cantonese-adapted models obtained by continual pre-training a Mandarin model on Cantonese text, and a monolingual Cantonese model trained from scratch. Results show that Cantonese-adapted models perform best overall, while monolingual models perform better on syntactic tasks. Mandarin models remain competitive in certain settings, indicating that direct transfer may be sufficient when Cantonese domain data is scarce. We release all datasets, code, and model weights to facilitate future research in Cantonese NLP.
Recent speech-to-speech (S2S) models generate intelligible speech but still lack natural expressiveness, largely due to the absence of a reliable evaluation metric. Existing approaches, such as subjective MOS ratings, low-level acoustic features, and emotion recognition are costly, limited, or incomplete. To address this, we present DeEAR (Decoding the Expressive Preference of eAR), a framework that converts human preference for speech expressiveness into an objective score. Grounded in phonetics and psychology, DeEAR evaluates speech across three dimensions: Emotion, Prosody, and Spontaneity, achieving strong alignment with human perception (Spearman's Rank Correlation Coefficient, SRCC = 0.86) using fewer than 500 annotated samples. Beyond reliable scoring, DeEAR enables fair benchmarking and targeted data curation. It not only distinguishes expressiveness gaps across S2S models but also selects 14K expressive utterances to form ExpressiveSpeech, which improves the expressive score (from 2.0 to 23.4 on a 100-point scale) of S2S models. Demos and codes are available at https://github.com/FreedomIntelligence/ExpressiveSpeech
The development of neural audio codecs (NACs) has largely promoted applications of language models (LMs) to speech processing and understanding. However, there lacks the verification on the effectiveness of autoregressive (AR) LMbased models in unifying different sub-tasks of speech enhancement (SE). In this work, we propose UniSE, a unified decoder-only LM-based framework to handle different SE tasks including speech restoration, target speaker extraction and speech separation. It takes input speech features as conditions and generates discrete tokens of the target speech using AR modeling, which facilitates a compatibility between distinct learning patterns of multiple tasks. Experiments on several benchmarks indicate the proposed UniSE can achieve competitive performance compared to discriminative and generative baselines, showing the capacity of LMs in unifying SE tasks. The demo page is available here: https://github.com/hyyan2k/UniSE.