Few-shot anomaly generation is emerging as a practical solution for augmenting the scarce anomaly data in industrial quality control settings. An ideal generator would meet three demands at once, namely (i) keep the normal background intact, (ii) inpaint anomalous regions to tightly overlap with the corresponding anomaly masks, and (iii) generate anomalous regions in a semantically valid location, while still producing realistic, diverse appearances from only a handful of real examples. Existing diffusion-based methods usually satisfy at most two of these requirements: global anomaly generators corrupt the background, whereas mask-guided ones often falter when the mask is imprecise or misplaced. We propose MAGIC--Mask-guided inpainting with multi-level perturbations and Context-aware alignment--to resolve all three issues. At its core, MAGIC fine-tunes a Stable Diffusion inpainting backbone that preserves normal regions and ensures strict adherence of the synthesized anomaly to the supplied mask, directly addressing background corruption and misalignment. To offset the diversity loss that fine-tuning can cause, MAGIC adds two complementary perturbation strategies: (i) Gaussian prompt-level perturbation applied during fine-tuning and inference that broadens the global appearance of anomalies while avoiding low-fidelity textual appearances, and (ii) mask-guided spatial noise injection that enriches local texture variations. Additionally, the context-aware mask alignment module forms semantic correspondences and relocates masks so that every anomaly remains plausibly contained within the host object, eliminating out-of-boundary artifacts. Under a consistent identical evaluation protocol on the MVTec-AD dataset, MAGIC outperforms previous state-of-the-arts in downstream anomaly tasks.
We study classical asymmetric binary perceptron (ABP) and associated \emph{local entropy} (LE) as potential source of its algorithmic hardness. Isolation of \emph{typical} ABP solutions in SAT phase seemingly suggests a universal algorithmic hardness. Paradoxically, efficient algorithms do exist even for constraint densities $\alpha$ fairly close but at a finite distance (\emph{computational gap}) from the capacity. In recent years, existence of rare large dense clusters and magical ability of fast algorithms to find them have been posited as the conceptual resolution of this paradox. Monotonicity or breakdown of the LEs associated with such \emph{atypical} clusters are predicated to play a key role in their thinning-out or even complete defragmentation. Invention of fully lifted random duality theory (fl RDT) [90,93,94] allows studying random structures \emph{typical} features. A large deviation upgrade, sfl LD RDT [96,97], moves things further and enables \emph{atypical} features characterizations as well. Utilizing the machinery of [96,97] we here develop a generic framework to study LE as an ABP's atypical feature. Already on the second level of lifting we discover that the LE results are closely matching those obtained through replica methods. For classical zero threshold ABP, we obtain that LE breaks down for $\alpha$ in $(0.77,0.78)$ interval which basically matches $\alpha\sim 0.75-0.77$ range that currently best ABP solvers can handle and effectively indicates that LE's behavior might indeed be among key reflections of the ABP's computational gaps presumable existence.
Automated Essay Scoring (AES) and Automatic Essay Feedback (AEF) systems aim to reduce the workload of human raters in educational assessment. However, most existing systems prioritize numeric scoring accuracy over the quality of feedback. This paper presents Multi-Agent Argumentation and Grammar Integrated Critiquer (MAGIC), a framework that uses multiple specialized agents to evaluate distinct writing aspects to both predict holistic scores and produce detailed, rubric-aligned feedback. To support evaluation, we curated a novel dataset of past GRE practice test essays with expert-evaluated scores and feedback. MAGIC outperforms baseline models in both essay scoring , as measured by Quadratic Weighted Kappa (QWK). We find that despite the improvement in QWK, there are opportunities for future work in aligning LLM-generated feedback to human preferences.
Paucity of medical data severely limits the generalizability of diagnostic ML models, as the full spectrum of disease variability can not be represented by a small clinical dataset. To address this, diffusion models (DMs) have been considered as a promising avenue for synthetic image generation and augmentation. However, they frequently produce medically inaccurate images, deteriorating the model performance. Expert domain knowledge is critical for synthesizing images that correctly encode clinical information, especially when data is scarce and quality outweighs quantity. Existing approaches for incorporating human feedback, such as reinforcement learning (RL) and Direct Preference Optimization (DPO), rely on robust reward functions or demand labor-intensive expert evaluations. Recent progress in Multimodal Large Language Models (MLLMs) reveals their strong visual reasoning capabilities, making them adept candidates as evaluators. In this work, we propose a novel framework, coined MAGIC (Medically Accurate Generation of Images through AI-Expert Collaboration), that synthesizes clinically accurate skin disease images for data augmentation. Our method creatively translates expert-defined criteria into actionable feedback for image synthesis of DMs, significantly improving clinical accuracy while reducing the direct human workload. Experiments demonstrate that our method greatly improves the clinical quality of synthesized skin disease images, with outputs aligning with dermatologist assessments. Additionally, augmenting training data with these synthesized images improves diagnostic accuracy by +9.02% on a challenging 20-condition skin disease classification task, and by +13.89% in the few-shot setting.
Cardiac substructures are essential in thoracic radiation therapy planning to minimize risk of radiation-induced heart disease. Deep learning (DL) offers efficient methods to reduce contouring burden but lacks generalizability across different modalities and overlapping structures. This work introduces and validates a Modality-AGnostic Image Cascade (MAGIC) for comprehensive and multi-modal cardiac substructure segmentation. MAGIC is implemented through replicated encoding and decoding branches of an nnU-Net-based, U-shaped backbone conserving the function of a single model. Twenty cardiac substructures (heart, chambers, great vessels (GVs), valves, coronary arteries (CAs), and conduction nodes) from simulation CT (Sim-CT), low-field MR-Linac, and cardiac CT angiography (CCTA) modalities were manually delineated and used to train (n=76), validate (n=15), and test (n=30) MAGIC. Twelve comparison models (four segmentation subgroups across three modalities) were equivalently trained. All methods were compared for training efficiency and against reference contours using the Dice Similarity Coefficient (DSC) and two-tailed Wilcoxon Signed-Rank test (threshold, p<0.05). Average DSC scores were 0.75(0.16) for Sim-CT, 0.68(0.21) for MR-Linac, and 0.80(0.16) for CCTA. MAGIC outperforms the comparison in 57% of cases, with limited statistical differences. MAGIC offers an effective and accurate segmentation solution that is lightweight and capable of segmenting multiple modalities and overlapping structures in a single model. MAGIC further enables clinical implementation by simplifying the computational requirements and offering unparalleled flexibility for clinical settings.
Graphic design plays a crucial role in both commercial and personal contexts, yet creating high-quality, editable, and aesthetically pleasing graphic compositions remains a time-consuming and skill-intensive task, especially for beginners. Current AI tools automate parts of the workflow, but struggle to accurately incorporate user-supplied assets, maintain editability, and achieve professional visual appeal. Commercial systems, like Canva Magic Design, rely on vast template libraries, which are impractical for replicate. In this paper, we introduce CreatiPoster, a framework that generates editable, multi-layer compositions from optional natural-language instructions or assets. A protocol model, an RGBA large multimodal model, first produces a JSON specification detailing every layer (text or asset) with precise layout, hierarchy, content and style, plus a concise background prompt. A conditional background model then synthesizes a coherent background conditioned on this rendered foreground layers. We construct a benchmark with automated metrics for graphic-design generation and show that CreatiPoster surpasses leading open-source approaches and proprietary commercial systems. To catalyze further research, we release a copyright-free corpus of 100,000 multi-layer designs. CreatiPoster supports diverse applications such as canvas editing, text overlay, responsive resizing, multilingual adaptation, and animated posters, advancing the democratization of AI-assisted graphic design. Project homepage: https://github.com/graphic-design-ai/creatiposter
Multi-axle Swerve-drive Autonomous Mobile Robots (MS-AGVs) equipped with independently steerable wheels are commonly used for high-payload transportation. In this work, we present a novel model predictive control (MPC) method for MS-AGV trajectory tracking that takes tire wear minimization consideration in the objective function. To speed up the problem-solving process, we propose a hierarchical controller design and simplify the dynamic model by integrating the \textit{magic formula tire model} and \textit{simplified tire wear model}. In the experiment, the proposed method can be solved by simulated annealing in real-time on a normal personal computer and by incorporating tire wear into the objective function, tire wear is reduced by 19.19\% while maintaining the tracking accuracy in curve-tracking experiments. In the more challenging scene: the desired trajectory is offset by 60 degrees from the vehicle's heading, the reduction in tire wear increased to 65.20\% compared to the kinematic model without considering the tire wear optimization.
Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by incorporating external retrieved information, mitigating issues such as hallucination and outdated knowledge. However, RAG systems are highly sensitive to retrieval noise prevalent in real-world scenarios. Existing benchmarks fail to emulate the complex and heterogeneous noise distributions encountered in real-world retrieval environments, undermining reliable robustness assessment. In this paper, we define four categories of retrieval noise based on linguistic properties and noise characteristics, aiming to reflect the heterogeneity of noise in real-world scenarios. Building on this, we introduce Magic Mushroom, a benchmark for replicating "magic mushroom" noise: contexts that appear relevant on the surface but covertly mislead RAG systems. Magic Mushroom comprises 7,468 single-hop and 3,925 multi-hop question-answer pairs. More importantly, Magic Mushroom enables researchers to flexibly configure combinations of retrieval noise according to specific research objectives or application scenarios, allowing for highly controlled evaluation setups. We evaluate LLM generators of varying parameter scales and classic RAG denoising strategies under diverse noise distributions to investigate their performance dynamics during progressive noise encroachment. Our analysis reveals that both generators and denoising strategies have significant room for improvement and exhibit extreme sensitivity to noise distributions. Magic Mushroom emerges as a promising tool for evaluating and advancing noise-robust RAG systems, accelerating their widespread deployment in real-world applications. The Magic Mushroom benchmark is available at https://drive.google.com/file/d/1aP5kyPuk4L-L_uoI6T9UhxuTyt8oMqjT/view?usp=sharing.
Recent advances in static 3D generation have intensified the demand for physically consistent dynamic 3D content. However, existing video generation models, including diffusion-based methods, often prioritize visual realism while neglecting physical plausibility, resulting in implausible object dynamics. Prior approaches for physics-aware dynamic generation typically rely on large-scale annotated datasets or extensive model fine-tuning, which imposes significant computational and data collection burdens and limits scalability across scenarios. To address these challenges, we present MAGIC, a training-free framework for single-image physical property inference and dynamic generation, integrating pretrained image-to-video diffusion models with iterative LLM-based reasoning. Our framework generates motion-rich videos from a static image and closes the visual-to-physical gap through a confidence-driven LLM feedback loop that adaptively steers the diffusion model toward physics-relevant motion. To translate visual dynamics into controllable physical behavior, we further introduce a differentiable MPM simulator operating directly on 3D Gaussians reconstructed from the single image, enabling physically grounded, simulation-ready outputs without any supervision or model tuning. Experiments show that MAGIC outperforms existing physics-aware generative methods in inference accuracy and achieves greater temporal coherence than state-of-the-art video diffusion models.
This work presents a methodology to estimate tire parameters and their uncertainty using a Bayesian optimization approach. The literature mainly considers the estimation of tire parameters but lacks an evaluation of the parameter identification quality and the required slip ratios for an adequate model fit. Therefore, we examine the use of Stochastical Variational Inference as a methodology to estimate both - the parameters and their uncertainties. We evaluate the method compared to a state-of-the-art Nelder-Mead algorithm for theoretical and real-world application. The theoretical study considers parameter fitting at different slip ratios to evaluate the required excitation for an adequate fitting of each parameter. The results are compared to a sensitivity analysis for a Pacejka Magic Formula tire model. We show the application of the algorithm on real-world data acquired during the Abu Dhabi Autonomous Racing League and highlight the uncertainties in identifying the curvature and shape parameters due to insufficient excitation. The gathered insights can help assess the acquired data's limitations and instead utilize standardized parameters until higher slip ratios are captured. We show that our proposed method can be used to assess the mean values and the uncertainties of tire model parameters in real-world conditions and derive actions for the tire modeling based on our simulative study.