Abstract:Developing robust, efficient navigation algorithms is challenging. Rule-based methods offer interpretability and modularity but struggle with learning from large datasets, while end-to-end neural networks excel in learning but lack transparency and modularity. In this paper, we present MIND-Stack, a modular software stack consisting of a localization network and a Stanley Controller with intermediate human interpretable state representations and end-to-end differentiability. Our approach enables the upstream localization module to reduce the downstream control error, extending its role beyond state estimation. Unlike existing research on differentiable algorithms that either lack modules of the autonomous stack to span from sensor input to actuator output or real-world implementation, MIND-Stack offers both capabilities. We conduct experiments that demonstrate the ability of the localization module to reduce the downstream control loss through its end-to-end differentiability while offering better performance than state-of-the-art algorithms. We showcase sim-to-real capabilities by deploying the algorithm on a real-world embedded autonomous platform with limited computation power and demonstrate simultaneous training of both the localization and controller towards one goal. While MIND-Stack shows good results, we discuss the incorporation of additional modules from the autonomous navigation pipeline in the future, promising even greater stability and performance in the next iterations of the framework.
Abstract:Scenario-based testing using simulations is a cornerstone of Autonomous Vehicles (AVs) software validation. So far, developers needed to choose between low-fidelity 2D simulators to explore the scenario space efficiently, and high-fidelity 3D simulators to study relevant scenarios in more detail, thus reducing testing costs while mitigating the sim-to-real gap. This paper presents a novel framework that leverages multi-agent co-simulation and procedural scenario generation to support scenario-based testing across low- and high-fidelity simulators for the development of motion planning algorithms. Our framework limits the effort required to transition scenarios between simulators and automates experiment execution, trajectory analysis, and visualization. Experiments with a reference motion planner show that our framework uncovers discrepancies between the planner's intended and actual behavior, thus exposing weaknesses in planning assumptions under more realistic conditions. Our framework is available at: https://github.com/TUM-AVS/MultiDrive
Abstract:This work presents an online velocity planner for autonomous racing that adapts to changing dynamic constraints, such as grip variations from tire temperature changes and rubber accumulation. The method combines a forward-backward solver for online velocity optimization with a novel spatial sampling strategy for local trajectory planning, utilizing a three-dimensional track representation. The computed velocity profile serves as a reference for the local planner, ensuring adaptability to environmental and vehicle dynamics. We demonstrate the approach's robust performance and computational efficiency in racing scenarios and discuss its limitations, including sensitivity to deviations from the predefined racing line and high jerk characteristics of the velocity profile.
Abstract:This work presents a methodology to estimate tire parameters and their uncertainty using a Bayesian optimization approach. The literature mainly considers the estimation of tire parameters but lacks an evaluation of the parameter identification quality and the required slip ratios for an adequate model fit. Therefore, we examine the use of Stochastical Variational Inference as a methodology to estimate both - the parameters and their uncertainties. We evaluate the method compared to a state-of-the-art Nelder-Mead algorithm for theoretical and real-world application. The theoretical study considers parameter fitting at different slip ratios to evaluate the required excitation for an adequate fitting of each parameter. The results are compared to a sensitivity analysis for a Pacejka Magic Formula tire model. We show the application of the algorithm on real-world data acquired during the Abu Dhabi Autonomous Racing League and highlight the uncertainties in identifying the curvature and shape parameters due to insufficient excitation. The gathered insights can help assess the acquired data's limitations and instead utilize standardized parameters until higher slip ratios are captured. We show that our proposed method can be used to assess the mean values and the uncertainties of tire model parameters in real-world conditions and derive actions for the tire modeling based on our simulative study.
Abstract:Conventional trajectory planning approaches for autonomous vehicles often assume a fixed vehicle model that remains constant regardless of the vehicle's location. This overlooks the critical fact that the tires and the surface are the two force-transmitting partners in vehicle dynamics; while the tires stay with the vehicle, surface conditions vary with location. Recognizing these challenges, this paper presents a novel framework for spatially resolving dynamic constraints in both offline and online planning algorithms applied to autonomous racing. We introduce the GripMap concept, which provides a spatial resolution of vehicle dynamic constraints in the Frenet frame, allowing adaptation to locally varying grip conditions. This enables compensation for location-specific effects, more efficient vehicle behavior, and increased safety, unattainable with spatially invariant vehicle models. The focus is on low storage demand and quick access through perfect hashing. This framework proved advantageous in real-world applications in the presented form. Experiments inspired by autonomous racing demonstrate its effectiveness. In future work, this framework can serve as a foundational layer for developing future interpretable learning algorithms that adjust to varying grip conditions in real-time.
Abstract:The classical g-g diagram, representing the achievable acceleration space for a vehicle, is commonly used as a constraint in trajectory planning and control due to its computational simplicity. To address non-planar road geometries, this concept can be extended to incorporate g-g constraints as a function of vehicle speed and vertical acceleration, commonly referred to as g-g-g-v diagrams. However, the estimation of g-g-g-v diagrams is an open problem. Existing simulation-based approaches struggle to isolate non-transient, open-loop stable states across all combinations of speed and acceleration, while optimization-based methods often require simplified vehicle equations and have potential convergence issues. In this paper, we present a novel, open-source, quasi-steady-state black box simulation approach that applies a virtual inertial force in the longitudinal direction. The method emulates the load conditions associated with a specified longitudinal acceleration while maintaining constant vehicle speed, enabling open-loop steering ramps in a purely QSS manner. Appropriate regulation of the ramp steer rate inherently mitigates transient vehicle dynamics when determining the maximum feasible lateral acceleration. Moreover, treating the vehicle model as a black box eliminates model mismatch issues, allowing the use of high-fidelity or proprietary vehicle dynamics models typically unsuited for optimization approaches. An open-source version of the proposed method is available at: https://github.com/TUM-AVS/GGGVDiagrams
Abstract:Motion planning in uncertain environments like complex urban areas is a key challenge for autonomous vehicles (AVs). The aim of our research is to investigate how AVs can navigate crowded, unpredictable scenarios with multiple pedestrians while maintaining a safe and efficient vehicle behavior. So far, most research has concentrated on static or deterministic traffic participant behavior. This paper introduces a novel algorithm for motion planning in crowded spaces by combining social force principles for simulating realistic pedestrian behavior with a risk-aware motion planner. We evaluate this new algorithm in a 2D simulation environment to rigorously assess AV-pedestrian interactions, demonstrating that our algorithm enables safe, efficient, and adaptive motion planning, particularly in highly crowded urban environments - a first in achieving this level of performance. This study has not taken into consideration real-time constraints and has been shown only in simulation so far. Further studies are needed to investigate the novel algorithm in a complete software stack for AVs on real cars to investigate the entire perception, planning and control pipeline in crowded scenarios. We release the code developed in this research as an open-source resource for further studies and development. It can be accessed at the following link: https://github.com/TUM-AVS/PedestrianAwareMotionPlanning
Abstract:Autonomous vehicles (AVs) must navigate dynamic urban environments where occlusions and perception limitations introduce significant uncertainties. This research builds upon and extends existing approaches in risk-aware motion planning and occlusion tracking to address these challenges. While prior studies have developed individual methods for occlusion tracking and risk assessment, a comprehensive method integrating these techniques has not been fully explored. We, therefore, enhance a phantom agent-centric model by incorporating sequential reasoning to track occluded areas and predict potential hazards. Our model enables realistic scenario representation and context-aware risk evaluation by modeling diverse phantom agents, each with distinct behavior profiles. Simulations demonstrate that the proposed approach improves situational awareness and balances proactive safety with efficient traffic flow. While these results underline the potential of our method, validation in real-world scenarios is necessary to confirm its feasibility and generalizability. By utilizing and advancing established methodologies, this work contributes to safer and more reliable AV planning in complex urban environments. To support further research, our method is available as open-source software at: https://github.com/TUM-AVS/OcclusionAwareMotionPlanning
Abstract:This article proposes a roadmap to address the current challenges in small-scale testbeds for Connected and Automated Vehicles (CAVs) and robot swarms. The roadmap is a joint effort of participants in the workshop "1st Workshop on Small-Scale Testbeds for Connected and Automated Vehicles and Robot Swarms," held on June 2 at the IEEE Intelligent Vehicles Symposium (IV) 2024 in Jeju, South Korea. The roadmap contains three parts: 1) enhancing accessibility and diversity, especially for underrepresented communities, 2) sharing best practices for the development and maintenance of testbeds, and 3) connecting testbeds through an abstraction layer to support collaboration. The workshop features eight invited speakers, four contributed papers [1]-[4], and a presentation of a survey paper on testbeds [5]. The survey paper provides an online comparative table of more than 25 testbeds, available at https://bassamlab.github.io/testbeds-survey. The workshop's own website is available at https://cpm-remote.lrt.unibwmuenchen.de/iv24-workshop.
Abstract:Drift vehicle control offers valuable insights to support safe autonomous driving in extreme conditions, which hinges on tracking a particular path while maintaining the vehicle states near the drift equilibrium points (DEP). However, conventional tracking methods are not adaptable for drift vehicles due to their opposite steering angle and yaw rate. In this paper, we propose an adaptive path tracking (APT) control method to dynamically adjust drift states to follow the reference path, improving the commonly utilized predictive path tracking methods with released computation burden. Furthermore, existing control strategies necessitate a precise system model to calculate the DEP, which can be more intractable due to the highly nonlinear drift dynamics and sensitive vehicle parameters. To tackle this problem, an adaptive learning-based model predictive control (ALMPC) strategy is proposed based on the APT method, where an upper-level Bayesian optimization is employed to learn the DEP and APT control law to instruct a lower-level MPC drift controller. This hierarchical system architecture can also resolve the inherent control conflict between path tracking and drifting by separating these objectives into different layers. The ALMPC strategy is verified on the Matlab-Carsim platform, and simulation results demonstrate its effectiveness in controlling the drift vehicle to follow a clothoid-based reference path even with the misidentified road friction parameter.