Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
The Internet of Underwater Things (IoUT) is revolutionizing marine sensing and environmental monitoring, as well as subaquatic exploration, which are enabled by interconnected and intelligent subsystems. Nevertheless, underwater communication is constrained by narrow bandwidth, high latency, and strict energy constraints, which are the source of efficiency problems in traditional data-centric networks. To tackle these problematic issues, this work provides a survey of recent advances in Semantic Communication (SC) for IoUT, a novel communication paradigm that seeks to harness not raw symbol information but rather its meaning and/or contextual significance. In this paper, we investigate the emerging advanced AI-powered frameworks, including large language models (LLMs), diffusion-based generative encoders, and federated learning (FL), that bridge semantic compression with context-aware prioritization and robust information reconstruction over noisy underwater channels. Hybrid acoustic-optical-RF architectures and edge-intelligent semantic encoders are also considered enablers of sustainable, adaptive operations. Examples in underwater archaeology, marine ecology, and autonomous underwater vehicles (AUVs) coordination are provided as a relief to illustrate the merits of meaning-driven connectivity. The paper concludes with some recommendations, including semantic representations standardization, cross-domain interpolation, and privacy-support schemes. These issues must be addressed in the future before trustworthy SC-enabled IoUT systems can be developed for underwater communication.
Popularity bias and positivity bias are two prominent sources of bias in recommender systems. Both arise from input data, propagate through recommendation models, and lead to unfair or suboptimal outcomes. Popularity bias occurs when a small subset of items receives most interactions, while positivity bias stems from the over-representation of high rating values. Although each bias has been studied independently, their combined effect, to which we refer to as multifactorial bias, remains underexplored. In this work, we examine how multifactorial bias influences item-side fairness, focusing on exposure bias, which reflects the unequal visibility of items in recommendation outputs. Through simulation studies, we find that positivity bias is disproportionately concentrated on popular items, further amplifying their over-exposure. Motivated by this insight, we adapt a percentile-based rating transformation as a pre-processing strategy to mitigate multifactorial bias. Experiments using six recommendation algorithms across four public datasets show that this approach improves exposure fairness with negligible accuracy loss. We also demonstrate that integrating this pre-processing step into post-processing fairness pipelines enhances their effectiveness and efficiency, enabling comparable or better fairness with reduced computational cost. These findings highlight the importance of addressing multifactorial bias and demonstrate the practical value of simple, data-driven pre-processing methods for improving fairness in recommender systems.
Customer reviews contain detailed, domain specific signals about service failures and user expectations, but converting this unstructured feedback into actionable business decisions remains difficult. We study review-to-action generation: producing concrete, implementable recommendations grounded in review text. We propose a modular two-LLM framework in which an Issue model extracts salient issues and assigns coarse themes, and an Advice model generates targeted operational fixes conditioned on the extracted issue representation. To enable specialization without expensive full fine-tuning, we adapt the Advice model using a mixture of LoRA experts strategy: multiple low-rank adapters are trained and a lightweight gating mechanism performs token-level expert mixing at inference, combining complementary expertise across issue types. We construct synthetic review-issue-advice triples from Yelp reviews (airlines and restaurants) to supervise training, and evaluate recommendations using an eight dimension operational rubric spanning actionability, specificity, feasibility, expected impact, novelty, non-redundancy, bias, and clarity. Across both domains, our approach consistently outperforms prompting-only and single-adapter baselines, yielding higher actionability and specificity while retaining favorable efficiency-quality trade-offs.
Vision-Language Models (VLMs) are rapidly replacing unimodal encoders in modern retrieval and recommendation systems. While their capabilities are well-documented, their robustness against adversarial manipulation in competitive ranking scenarios remains largely unexplored. In this paper, we uncover a critical vulnerability in VLM-based product search: multimodal ranking attacks. We present Multimodal Generative Engine Optimization (MGEO), a novel adversarial framework that enables a malicious actor to unfairly promote a target product by jointly optimizing imperceptible image perturbations and fluent textual suffixes. Unlike existing attacks that treat modalities in isolation, MGEO employs an alternating gradient-based optimization strategy to exploit the deep cross-modal coupling within the VLM. Extensive experiments on real-world datasets using state-of-the-art models demonstrate that our coordinated attack significantly outperforms text-only and image-only baselines. These findings reveal that multimodal synergy, typically a strength of VLMs, can be weaponized to compromise the integrity of search rankings without triggering conventional content filters.
We introduce a unified framework that seamlessly integrates algorithmic recourse, contextual bandits, and large language models (LLMs) to support sequential decision-making in high-stakes settings such as personalized medicine. We first introduce the recourse bandit problem, where a decision-maker must select both a treatment action and a feasible, minimal modification to mutable patient features. To address this problem, we develop the Generalized Linear Recourse Bandit (GLRB) algorithm. Building on this foundation, we propose LIBRA, a Language Model-Informed Bandit Recourse Algorithm that strategically combines domain knowledge from LLMs with the statistical rigor of bandit learning. LIBRA offers three key guarantees: (i) a warm-start guarantee, showing that LIBRA significantly reduces initial regret when LLM recommendations are near-optimal; (ii) an LLM-effort guarantee, proving that the algorithm consults the LLM only $O(\log^2 T)$ times, where $T$ is the time horizon, ensuring long-term autonomy; and (iii) a robustness guarantee, showing that LIBRA never performs worse than a pure bandit algorithm even when the LLM is unreliable. We further establish matching lower bounds that characterize the fundamental difficulty of the recourse bandit problem and demonstrate the near-optimality of our algorithms. Experiments on synthetic environments and a real hypertension-management case study confirm that GLRB and LIBRA improve regret, treatment quality, and sample efficiency compared with standard contextual bandits and LLM-only benchmarks. Our results highlight the promise of recourse-aware, LLM-assisted bandit algorithms for trustworthy LLM-bandits collaboration in personalized high-stakes decision-making.
We study cooperative stochastic multi-armed bandits with vector-valued rewards under adversarial corruption and limited verification. In each of $T$ rounds, each of $N$ agents selects an arm, the environment generates a clean reward vector, and an adversary perturbs the observed feedback subject to a global corruption budget $Γ$. Performance is measured by team regret under a coordinate-wise nondecreasing, $L$-Lipschitz scalarization $φ$, covering linear, Chebyshev, and smooth monotone utilities. Our main contribution is a communication-corruption coupling: we show that a fixed environment-side budget $Γ$ can translate into an effective corruption level ranging from $Γ$ to $NΓ$, depending on whether agents share raw samples, sufficient statistics, or only arm recommendations. We formalize this via a protocol-induced multiplicity functional and prove regret bounds parameterized by the resulting effective corruption. As corollaries, raw-sample sharing can suffer an $N$-fold larger additive corruption penalty, whereas summary sharing and recommendation-only sharing preserve an unamplified $O(Γ)$ term and achieve centralized-rate team regret. We further establish information-theoretic limits, including an unavoidable additive $Ω(Γ)$ penalty and a high-corruption regime $Γ=Θ(NT)$ where sublinear regret is impossible without clean information. Finally, we characterize how a global budget $ν$ of verified observations restores learnability. That is, verification is necessary in the high-corruption regime, and sufficient once it crosses the identification threshold, with certified sharing enabling the team's regret to become independent of $Γ$.
Quality of Service (QoS) prediction is one of the most fundamental problems in service computing and personalized recommendation. In the problem, there is a set of users and services, each associated with a set of descriptive features. Interactions between users and services produce feedback values, typically represented as numerical QoS metrics such as response time or availability. Given the observed feedback for a subset of user-service pairs, the goal is to predict the QoS values for the remaining pairs. A key challenge in QoS prediction is the inherent sparsity of user-service interactions, as only a small subset of feedback values is typically observed. To address this, we propose a self-augmented strategy that leverages a model's own predictions for iterative refinement. In particular, we partially mask the predicted values and feed them back into the model to predict again. Building on this idea, we design a self-augmented mixture-of-experts model, where multiple expert networks iteratively and collaboratively estimate QoS values. We find that the iterative augmentation process naturally aligns with the MoE architecture by enabling inter-expert communication: in the second round, each expert receives the first-round predictions and refines its output accordingly. Experiments on benchmark datasets show that our method outperforms existing baselines and achieves competitive results.
Multimodal sequential recommendation (MSR) leverages diverse item modalities to improve recommendation accuracy, while achieving effective and adaptive fusion remains challenging. Existing MSR models often overlook synergistic information that emerges only through modality combinations. Moreover, they typically assume a fixed importance for different modality interactions across users. To address these limitations, we propose \textbf{P}ersonalized \textbf{R}ecommend-ation via \textbf{I}nformation \textbf{S}ynergy \textbf{M}odule (PRISM), a plug-and-play framework for sequential recommendation (SR). PRISM explicitly decomposes multimodal information into unique, redundant, and synergistic components through an Interaction Expert Layer and dynamically weights them via an Adaptive Fusion Layer guided by user preferences. This information-theoretic design enables fine-grained disentanglement and personalized fusion of multimodal signals. Extensive experiments on four datasets and three SR backbones demonstrate its effectiveness and versatility. The code is available at https://github.com/YutongLi2024/PRISM.
Sequential recommendation (SR) learns user preferences based on their historical interaction sequences and provides personalized suggestions. In real-world scenarios, most users can only interact with a handful of items, while the majority of items are seldom consumed. This pervasive long-tail challenge limits the model's ability to learn user preferences. Despite previous efforts to enrich tail items/users with knowledge from head parts or improve tail learning through additional contextual information, they still face the following issues: 1) They struggle to improve the situation where interactions of tail users/items are scarce, leading to incomplete preferences learning for the tail parts. 2) Existing methods often degrade overall or head parts performance when improving accuracy for tail users/items, thereby harming the user experience. We propose Tail-Aware Data Augmentation (TADA) for long-tail sequential recommendation, which enhances the interaction frequency for tail items/users while maintaining head performance, thereby promoting the model's learning capabilities for the tail. Specifically, we first capture the co-occurrence and correlation among low-popularity items by a linear model. Building upon this, we design two tail-aware augmentation operators, T-Substitute and T-Insert. The former replaces the head item with a relevant item, while the latter utilizes co-occurrence relationships to extend the original sequence by incorporating both head and tail items. The augmented and original sequences are mixed at the representation level to preserve preference knowledge. We further extend the mix operation across different tail-user sequences and augmented sequences to generate richer augmented samples, thereby improving tail performance. Comprehensive experiments demonstrate the superiority of our method. The codes are provided at https://github.com/KingGugu/TADA.
Sparse autoencoders (SAEs) have recently emerged as pivotal tools for introspection into large language models. SAEs can uncover high-quality, interpretable features at different levels of granularity and enable targeted steering of the generation process by selectively activating specific neurons in their latent activations. Our paper is the first to apply this approach to collaborative filtering, aiming to extract similarly interpretable features from representations learned purely from interaction signals. In particular, we focus on a widely adopted class of collaborative autoencoders (CFAEs) and augment them by inserting an SAE between their encoder and decoder networks. We demonstrate that such representation is largely monosemantic and propose suitable mapping functions between semantic concepts and individual neurons. We also evaluate a simple yet effective method that utilizes this representation to steer the recommendations in a desired direction.