Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Recent studies increasingly explore Large Language Models (LLMs) as a new paradigm for recommendation systems due to their scalability and world knowledge. However, existing work has three key limitations: (1) most efforts focus on retrieval and ranking, while the reranking phase, critical for refining final recommendations, is largely overlooked; (2) LLMs are typically used in zero-shot or supervised fine-tuning settings, leaving their reasoning abilities, especially those enhanced through reinforcement learning (RL) and high-quality reasoning data, underexploited; (3) items are commonly represented by non-semantic IDs, creating major scalability challenges in industrial systems with billions of identifiers. To address these gaps, we propose the Generative Reasoning Reranker (GR2), an end-to-end framework with a three-stage training pipeline tailored for reranking. First, a pretrained LLM is mid-trained on semantic IDs encoded from non-semantic IDs via a tokenizer achieving $\ge$99% uniqueness. Next, a stronger larger-scale LLM generates high-quality reasoning traces through carefully designed prompting and rejection sampling, which are used for supervised fine-tuning to impart foundational reasoning skills. Finally, we apply Decoupled Clip and Dynamic sAmpling Policy Optimization (DAPO), enabling scalable RL supervision with verifiable rewards designed specifically for reranking. Experiments on two real-world datasets demonstrate GR2's effectiveness: it surpasses the state-of-the-art OneRec-Think by 2.4% in Recall@5 and 1.3% in NDCG@5. Ablations confirm that advanced reasoning traces yield substantial gains across metrics. We further find that RL reward design is crucial in reranking: LLMs tend to exploit reward hacking by preserving item order, motivating conditional verifiable rewards to mitigate this behavior and optimize reranking performance.
In real-world streaming recommender systems, user preferences evolve dynamically over time. Existing bandit-based methods treat time merely as a timestamp, neglecting its explicit relationship with user preferences and leading to suboptimal performance. Moreover, online learning methods often suffer from inefficient exploration-exploitation during the early online phase. To address these issues, we propose HyperBandit+, a novel contextual bandit policy that integrates a time-aware hypernetwork to adapt to time-varying user preferences and employs a large language model-assisted warm-start mechanism (LLM Start) to enhance exploration-exploitation efficiency in the early online phase. Specifically, HyperBandit+ leverages a neural network that takes time features as input and generates parameters for estimating time-varying rewards by capturing the correlation between time and user preferences. Additionally, the LLM Start mechanism employs multi-step data augmentation to simulate realistic interaction data for effective offline learning, providing warm-start parameters for the bandit policy in the early online phase. To meet real-time streaming recommendation demands, we adopt low-rank factorization to reduce hypernetwork training complexity. Theoretically, we rigorously establish a sublinear regret upper bound that accounts for both the hypernetwork and the LLM warm-start mechanism. Extensive experiments on real-world datasets demonstrate that HyperBandit+ consistently outperforms state-of-the-art baselines in terms of accumulated rewards.
Large Language Models are increasingly employed in generating consumer product recommendations, yet their potential for embedding and amplifying gender and race biases remains underexplored. This paper serves as one of the first attempts to examine these biases within LLM-generated recommendations. We leverage prompt engineering to elicit product suggestions from LLMs for various race and gender groups and employ three analytical methods-Marked Words, Support Vector Machines, and Jensen-Shannon Divergence-to identify and quantify biases. Our findings reveal significant disparities in the recommendations for demographic groups, underscoring the need for more equitable LLM recommendation systems.
This study investigates students' perceptions of Artificial Intelligence (AI) grading systems in an undergraduate computer science course (n = 27), focusing on a block-based programming final project. Guided by the ethical principles framework articulated by Jobin (2019), our study examines fairness, trust, consistency, and transparency in AI grading by comparing AI-generated feedback with original human-graded feedback. Findings reveal concerns about AI's lack of contextual understanding and personalization. We recommend that equitable and trustworthy AI systems reflect human judgment, flexibility, and empathy, serving as supplementary tools under human oversight. This work contributes to ethics-centered assessment practices by amplifying student voices and offering design principles for humanizing AI in designed learning environments.
Recovering a signal from its degraded measurements is a long standing challenge in science and engineering. Recently, zero-shot diffusion based methods have been proposed for such inverse problems, offering a posterior sampling based solution that leverages prior knowledge. Such algorithms incorporate the observations through inference, often leaning on manual tuning and heuristics. In this work we propose a rigorous analysis of such approximate posterior-samplers, relying on a Gaussianity assumption of the prior. Under this regime, we show that both the ideal posterior sampler and diffusion-based reconstruction algorithms can be expressed in closed-form, enabling their thorough analysis and comparisons in the spectral domain. Building on these representations, we also introduce a principled framework for parameter design, replacing heuristic selection strategies used to date. The proposed approach is method-agnostic and yields tailored parameter choices for each algorithm, jointly accounting for the characteristics of the prior, the degraded signal, and the diffusion dynamics. We show that our spectral recommendations differ structurally from standard heuristics and vary with the diffusion step size, resulting in a consistent balance between perceptual quality and signal fidelity.
Conformal prediction provides rigorous, distribution-free uncertainty guarantees, but often yields prohibitively large prediction sets in structured domains such as routing, planning, or sequential recommendation. We introduce "graph-based conformal compression", a framework for constructing compact subgraphs that preserve statistical validity while reducing structural complexity. We formulate compression as selecting a smallest subgraph capturing a prescribed fraction of the probability mass, and reduce to a weighted version of densest $k$-subgraphs in hypergraphs, in the regime where the subgraph has a large fraction of edges. We design efficient approximation algorithms that achieve constant factor coverage and size trade-offs. Crucially, we prove that our relaxation satisfies a monotonicity property, derived from a connection to parametric minimum cuts, which guarantees the nestedness required for valid conformal guarantees. Our results on the one hand bridge efficient conformal prediction with combinatorial graph compression via monotonicity, to provide rigorous guarantees on both statistical validity, and compression or size. On the other hand, they also highlight an algorithmic regime, distinct from classical densest-$k$-subgraph hardness settings, where the problem can be approximated efficiently. We finally validate our algorithmic approach via simulations for trip planning and navigation, and compare to natural baselines.
Early and reliable detection of gear faults in complex drivetrain systems is critical for aviation safety and operational availability. We present the Local Damage Mode Extractor (LDME), a structured, physics-informed signal processing framework that combines dual-path denoising, multiscale decomposition, fractional-domain enhancement, and statistically principled anomaly scoring to produce interpretable condition indicators without supervision. LDME is organized in three layers: (i) dual-path denoising (DWT with adaptive Savitzky-Golay smoothing) to suppress broadband noise while preserving transient fault structure; (ii) multi-scale damage enhancement using a Teager-Kaiser pre-amplifier followed by a Hadamard-Caputo fractional operator that accentuates non-sinusoidal, low-frequency fault signatures; and (iii) decision fusion, where harmonics-aware Fourier indicators are combined and scored by an unsupervised anomaly detector. Evaluation using the Case Western Reserve University (CWRU) bearing dataset, the HUMS 2023 planetary gearbox benchmark, and a controlled simulated dataset shows that LDME consistently distinguishes nominal, early-crack, and propagated-crack stages under various operating conditions. LDME identifies the primary detection event earlier (198 cycles) than HT-TSA (284 cycles) and advances maintenance recommendation time from 383 to 365 cycles. We discuss its relation to prior art, limitations, and future theoretical directions. All code and experimental configurations are documented for reproducibility.
Scaling deep learning recommendation models is an effective way to improve model expressiveness. Existing approaches often incur substantial computational overhead, making them difficult to deploy in large-scale industrial systems under strict latency constraints. Recent sparse activation scaling methods, such as Sparse Mixture-of-Experts, reduce computation by activating only a subset of parameters, but still suffer from high memory access costs and limited personalization capacity due to the large size and small number of experts. To address these challenges, we propose MSN, a memory-based sparse activation scaling framework for recommendation models. MSN dynamically retrieves personalized representations from a large parameterized memory and integrates them into downstream feature interaction modules via a memory gating mechanism, enabling fine-grained personalization with low computational overhead. To enable further expansion of the memory capacity while keeping both computational and memory access costs under control, MSN adopts a Product-Key Memory (PKM) mechanism, which factorizes the memory retrieval complexity from linear time to sub-linear complexity. In addition, normalization and over-parameterization techniques are introduced to maintain balanced memory utilization and prevent memory retrieval collapse. We further design customized Sparse-Gather operator and adopt the AirTopK operator to improve training and inference efficiency in industrial settings. Extensive experiments demonstrate that MSN consistently improves recommendation performance while maintaining high efficiency. Moreover, MSN has been successfully deployed in the Douyin Search Ranking System, achieving significant gains over deployed state-of-the-art models in both offline evaluation metrics and large-scale online A/B test.
Industrial recommender systems increasingly adopt multi-scenario learning (MSL) and multi-task learning (MTL) to handle diverse user interactions and contexts, but existing approaches suffer from two critical drawbacks: (1) underutilization of large-scale model parameters due to limited interaction with complex feature modules, and (2) difficulty in jointly modeling scenario and task information in a unified framework. To address these challenges, we propose a unified \textbf{M}ulti-\textbf{D}istribution \textbf{L}earning (MDL) framework, inspired by the "prompting" paradigm in large language models (LLMs). MDL treats scenario and task information as specialized tokens rather than auxiliary inputs or gating signals. Specifically, we introduce a unified information tokenization module that transforms features, scenarios, and tasks into a unified tokenized format. To facilitate deep interaction, we design three synergistic mechanisms: (1) feature token self-attention for rich feature interactions, (2) domain-feature attention for scenario/task-adaptive feature activation, and (3) domain-fused aggregation for joint distribution prediction. By stacking these interactions, MDL enables scenario and task information to "prompt" and activate the model's vast parameter space in a bottom-up, layer-wise manner. Extensive experiments on real-world industrial datasets demonstrate that MDL significantly outperforms state-of-the-art MSL and MTL baselines. Online A/B testing on Douyin Search platform over one month yields +0.0626\% improvement in LT30 and -0.3267\% reduction in change query rate. MDL has been fully deployed in production, serving hundreds of millions of users daily.
Large language models (LLMs) are increasingly embedded into recommender systems, where they operate across multiple functional roles such as data augmentation, profiling, and decision making. While prior work emphasizes recommendation performance, the systemic risks of LLMs, such as bias and hallucination, and their propagation through feedback loops remain largely unexplored. In this paper, we propose a role-aware, phase-wise diagnostic framework that traces how these risks emerge, manifest in ranking outcomes, and accumulate over repeated recommendation cycles. We formalize a controlled feedback-loop pipeline that simulates long-term interaction dynamics and enables empirical measurement of risks at the LLM-generated content, ranking, and ecosystem levels. Experiments on widely used benchmarks demonstrate that LLM-based components can amplify popularity bias, introduce spurious signals through hallucination, and lead to polarized and self-reinforcing exposure patterns over time. We plan to release our framework as an open-source toolkit to facilitate systematic risk analysis across diverse LLM-powered recommender systems.