Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Capturing complex user preferences from sparse behavioral sequences remains a fundamental challenge in sequential recommendation. Recent latent reasoning methods have shown promise by extending test-time computation through multi-step reasoning, yet they exclusively rely on depth-level scaling along a single trajectory, suffering from diminishing returns as reasoning depth increases. To address this limitation, we propose \textbf{Parallel Latent Reasoning (PLR)}, a novel framework that pioneers width-level computational scaling by exploring multiple diverse reasoning trajectories simultaneously. PLR constructs parallel reasoning streams through learnable trigger tokens in continuous latent space, preserves diversity across streams via global reasoning regularization, and adaptively synthesizes multi-stream outputs through mixture-of-reasoning-streams aggregation. Extensive experiments on three real-world datasets demonstrate that PLR substantially outperforms state-of-the-art baselines while maintaining real-time inference efficiency. Theoretical analysis further validates the effectiveness of parallel reasoning in improving generalization capability. Our work opens new avenues for enhancing reasoning capacity in sequential recommendation beyond existing depth scaling.
Diverse and enriched data sources are essential for commercial ads-recommendation models to accurately assess user interest both before and after engagement with content. While extended user-engagement histories can improve the prediction of user interests, it is equally important to embed activity sequences from multiple sources to ensure freshness of user and ad-representations, following scaling law principles. In this paper, we present a novel three-dimensional framework for enhancing user-ad representations without increasing model inference or serving complexity. The first dimension examines the impact of incorporating diverse event sources, the second considers the benefits of longer user histories, and the third focuses on enriching data with additional event attributes and multi-modal embeddings. We assess the return on investment (ROI) of our source enrichment framework by comparing organic user engagement sources, such as content viewing, with ad-impression sources. The proposed method can boost the area under curve (AUC) and the slope of scaling curves for ad-impression sources by 1.56 to 2 times compared to organic usage sources even for short online-sequence lengths of 100 to 10K. Additionally, click-through rate (CTR) prediction improves by 0.56% AUC over the baseline production ad-recommendation system when using enriched ad-impression event sources, leading to improved sequence scaling resolutions for longer and offline user-ad representations.
Large language models (LLMs) have demonstrated success in various applications of user recommendation and personalization across e-commerce and entertainment. On many entertainment platforms such as Netflix, users typically interact with a wide range of titles, each represented by an artwork. Since users have diverse preferences, an artwork that appeals to one type of user may not resonate with another with different preferences. Given this user heterogeneity, our work explores the novel problem of personalized artwork recommendations according to diverse user preferences. Similar to the multi-dimensional nature of users' tastes, titles contain different themes and tones that may appeal to different viewers. For example, the same title might feature both heartfelt family drama and intense action scenes. Users who prefer romantic content may like the artwork emphasizing emotional warmth between the characters, while those who prefer action thrillers may find high-intensity action scenes more intriguing. Rather than a one-size-fits-all approach, we conduct post-training of pre-trained LLMs to make personalized artwork recommendations, selecting the most preferred visual representation of a title for each user and thereby improving user satisfaction and engagement. Our experimental results with Llama 3.1 8B models (trained on a dataset of 110K data points and evaluated on 5K held-out user-title pairs) show that the post-trained LLMs achieve 3-5\% improvements over the Netflix production model, suggesting a promising direction for granular personalized recommendations using LLMs.
Large Language Model (LLM)-based agents are increasingly deployed in e-commerce applications to assist customer services in tasks such as product inquiries, recommendations, and order management. Existing benchmarks primarily evaluate whether these agents successfully complete the final task, overlooking the intermediate reasoning stages that are crucial for effective decision-making. To address this gap, we propose EComStage, a unified benchmark for evaluating agent-capable LLMs across the comprehensive stage-wise reasoning process: Perception (understanding user intent), Planning (formulating an action plan), and Action (executing the decision). EComStage evaluates LLMs through seven separate representative tasks spanning diverse e-commerce scenarios, with all samples human-annotated and quality-checked. Unlike prior benchmarks that focus only on customer-oriented interactions, EComStage also evaluates merchant-oriented scenarios, including promotion management, content review, and operational support relevant to real-world applications. We evaluate a wide range of over 30 LLMs, spanning from 1B to over 200B parameters, including open-source models and closed-source APIs, revealing stage/orientation-specific strengths and weaknesses. Our results provide fine-grained, actionable insights for designing and optimizing LLM-based agents in real-world e-commerce settings.
We present ML-UCB, a generalized upper confidence bound algorithm that integrates arbitrary machine learning models into multi-armed bandit frameworks. A fundamental challenge in deploying sophisticated ML models for sequential decision-making is the lack of tractable concentration inequalities required for principled exploration. We overcome this limitation by directly modeling the learning curve behavior of the underlying estimator. Specifically, assuming the Mean Squared Error decreases as a power law in the number of training samples, we derive a generalized concentration inequality and prove that ML-UCB achieves sublinear regret. This framework enables the principled integration of any ML model whose learning curve can be empirically characterized, eliminating the need for model-specific theoretical analysis. We validate our approach through experiments on a collaborative filtering recommendation system using online matrix factorization with synthetic data designed to simulate a simplified two-tower model, demonstrating substantial improvements over LinUCB
Polymer-based long-acting injectables (LAIs) have transformed the treatment of chronic diseases by enabling controlled drug delivery, thus reducing dosing frequency and extending therapeutic duration. Achieving controlled drug release from LAIs requires extensive optimization of the complex underlying physicochemical properties. Machine learning (ML) can accelerate LAI development by modeling the complex relationships between LAI properties and drug release. However, recent ML studies have provided limited information on key properties that modulate drug release, due to the lack of custom modeling and analysis tailored to LAI data. This paper presents a novel data transformation and explainable ML approach to synthesize actionable information from 321 LAI formulations by predicting early drug release at 24, 48, and 72 hours, classification of release profile types, and prediction of complete release profiles. These three experiments investigate the contribution and control of LAI material characteristics in early and complete drug release profiles. A strong correlation (>0.65) is observed between the true and predicted drug release in 72 hours, while a 0.87 F1-score is obtained in classifying release profile types. A time-independent ML framework predicts delayed biphasic and triphasic curves with better performance than current time-dependent approaches. Shapley additive explanations reveal the relative influence of material characteristics during early and for complete release which fill several gaps in previous in-vitro and ML-based studies. The novel approach and findings can provide a quantitative strategy and recommendations for scientists to optimize the drug-release dynamics of LAI. The source code for the model implementation is publicly available.
Despite recent advances in machine learning and explainable AI, a gap remains in personalized preventive healthcare: predictions, interventions, and recommendations should be both understandable and verifiable for all stakeholders in the healthcare sector. We present a demonstration of how prototype-based learning can address these needs. Our proposed framework, ProtoPal, features both front- and back-end modes; it achieves superior quantitative performance while also providing an intuitive presentation of interventions and their simulated outcomes.
Multimodal large language models (MLLMs) show promising performance on medical visual question answering (VQA) and report generation, but these generation and explanation abilities do not reliably transfer to disease-specific classification. We evaluated MLLM architectures on knee osteoarthritis (OA) radiograph classification, which remains underrepresented in existing medical MLLM benchmarks, even though knee OA affects an estimated 300 to 400 million people worldwide. Through systematic ablation studies manipulating the vision encoder, the connector, and the large language model (LLM) across diverse training strategies, we measured each component's contribution to diagnostic accuracy. In our classification task, a trained vision encoder alone could outperform full MLLM pipelines in classification accuracy and fine-tuning the LLM provided no meaningful improvement over prompt-based guidance. And LoRA fine-tuning on a small, class-balanced dataset (500 images) gave better results than training on a much larger but class-imbalanced set (5,778 images), indicating that data balance and quality can matter more than raw scale for this task. These findings suggest that for domain-specific medical classification, LLMs are more effective as interpreters and report generators rather than as primary classifiers. Therefore, the MLLM architecture appears less suitable for medical image diagnostic classification tasks that demand high certainty. We recommend prioritizing vision encoder optimization and careful dataset curation when developing clinically applicable systems.
Large Language Models (LLMs) are increasingly applied in recommendation scenarios due to their strong natural language understanding and generation capabilities. However, they are trained on vast corpora whose contents are not publicly disclosed, raising concerns about data leakage. Recent work has shown that the MovieLens-1M dataset is memorized by both the LLaMA and OpenAI model families, but the extraction of such memorized data has so far relied exclusively on manual prompt engineering. In this paper, we pose three main questions: Is it possible to enhance manual prompting? Can LLM memorization be detected through methods beyond manual prompting? And can the detection of data leakage be automated? To address these questions, we evaluate three approaches: (i) jailbreak prompt engineering; (ii) unsupervised latent knowledge discovery, probing internal activations via Contrast-Consistent Search (CCS) and Cluster-Norm; and (iii) Automatic Prompt Engineering (APE), which frames prompt discovery as a meta-learning process that iteratively refines candidate instructions. Experiments on MovieLens-1M using LLaMA models show that jailbreak prompting does not improve the retrieval of memorized items and remains inconsistent; CCS reliably distinguishes genuine from fabricated movie titles but fails on numerical user and rating data; and APE retrieves item-level information with moderate success yet struggles to recover numerical interactions. These findings suggest that automatically optimizing prompts is the most promising strategy for extracting memorized samples.
ChatGPT has emerged as a versatile tool, demonstrating capabilities across diverse domains. Given these successes, the Recommender Systems (RSs) community has begun investigating its applications within recommendation scenarios primarily focusing on accuracy. While the integration of ChatGPT into RSs has garnered significant attention, a comprehensive analysis of its performance across various dimensions remains largely unexplored. Specifically, the capabilities of providing diverse and novel recommendations or exploring potential biases such as popularity bias have not been thoroughly examined. As the use of these models continues to expand, understanding these aspects is crucial for enhancing user satisfaction and achieving long-term personalization. This study investigates the recommendations provided by ChatGPT-3.5 and ChatGPT-4 by assessing ChatGPT's capabilities in terms of diversity, novelty, and popularity bias. We evaluate these models on three distinct datasets and assess their performance in Top-N recommendation and cold-start scenarios. The findings reveal that ChatGPT-4 matches or surpasses traditional recommenders, demonstrating the ability to balance novelty and diversity in recommendations. Furthermore, in the cold-start scenario, ChatGPT models exhibit superior performance in both accuracy and novelty, suggesting they can be particularly beneficial for new users. This research highlights the strengths and limitations of ChatGPT's recommendations, offering new perspectives on the capacity of these models to provide recommendations beyond accuracy-focused metrics.