What is Topic Modeling? Topic modeling is a type of statistical modeling for discovering the abstract topics that occur in a collection of documents.
Papers and Code
Jun 05, 2025
Abstract:A lack of accessible data has historically restricted malware analysis research, and practitioners have relied heavily on datasets provided by industry sources to advance. Existing public datasets are limited by narrow scope - most include files targeting a single platform, have labels supporting just one type of malware classification task, and make no effort to capture the evasive files that make malware detection difficult in practice. We present EMBER2024, a new dataset that enables holistic evaluation of malware classifiers. Created in collaboration with the authors of EMBER2017 and EMBER2018, the EMBER2024 dataset includes hashes, metadata, feature vectors, and labels for more than 3.2 million files from six file formats. Our dataset supports the training and evaluation of machine learning models on seven malware classification tasks, including malware detection, malware family classification, and malware behavior identification. EMBER2024 is the first to include a collection of malicious files that initially went undetected by a set of antivirus products, creating a "challenge" set to assess classifier performance against evasive malware. This work also introduces EMBER feature version 3, with added support for several new feature types. We are releasing the EMBER2024 dataset to promote reproducibility and empower researchers in the pursuit of new malware research topics.
Via

May 29, 2025
Abstract:The inherent nature of social media posts, characterized by the freedom of language use with a disjointed array of diverse opinions and topics, poses significant challenges to downstream NLP tasks such as comment clustering, comment summarization, and social media opinion analysis. To address this, we propose a granular level of identifying and generating aspect terms from individual comments to guide model attention. Specifically, we leverage multilingual large language models with supervised fine-tuning for comment aspect term generation (CAT-G), further aligning the model's predictions with human expectations through DPO. We demonstrate the effectiveness of our method in enhancing the comprehension of social media discourse on two NLP tasks. Moreover, this paper contributes the first multilingual CAT-G test set on English, Chinese, Malay, and Bahasa Indonesian. As LLM capabilities vary among languages, this test set allows for a comparative analysis of performance across languages with varying levels of LLM proficiency.
* The paper was peer-reviewed
Via

Jun 05, 2025
Abstract:Package monitoring is an important topic in industrial applications, with significant implications for operational efficiency and ecological sustainability. In this study, we propose an approach that employs an embedded system, placed on reusable packages, to detect their state (on a Forklift, in a Truck, or in an undetermined location). We aim to design a system with a lifespan of several years, corresponding to the lifespan of reusable packages. Our analysis demonstrates that maximizing device lifespan requires minimizing wake time. We propose a pipeline that includes data processing, training, and evaluation of the deep learning model designed for imbalanced, multiclass time series data collected from an embedded sensor. The method uses a one-dimensional Convolutional Neural Network architecture to classify accelerometer data from the IoT device. Before training, two data augmentation techniques are tested to solve the imbalance problem of the dataset: the Synthetic Minority Oversampling TEchnique and the ADAptive SYNthetic sampling approach. After training, compression techniques are implemented to have a small model size. On the considered twoclass problem, the methodology yields a precision of 94.54% for the first class and 95.83% for the second class, while compression techniques reduce the model size by a factor of four. The trained model is deployed on the IoT device, where it operates with a power consumption of 316 mW during inference.
Via

May 30, 2025
Abstract:Steering vectors are a lightweight method for controlling text properties by adding a learned bias to language model activations at inference time. So far, steering vectors have predominantly been evaluated in multiple-choice settings, while their effectiveness in free-form generation tasks remains understudied. Moving "Beyond Multiple Choice," we thoroughly evaluate the effectiveness of steering vectors in adaptively controlling topical focus, sentiment, toxicity, and readability in abstractive summaries of the NEWTS dataset. We find that steering effectively controls the targeted summary properties, but high steering strengths consistently degrade both intrinsic and extrinsic text quality. Compared to steering, prompting offers weaker control, while preserving text quality. Combining steering and prompting yields the strongest control over text properties and offers the most favorable efficacy-quality trade-off at moderate steering strengths. Our results underscore the practical trade-off between control strength and text quality preservation when applying steering vectors to free-form generation tasks.
* 29 pages, 21 figures, preprint
Via

Jun 09, 2025
Abstract:Modern large language models (LLMs) are inherently auto-regressive, requiring input to be serialized into flat sequences regardless of their structural dependencies. This serialization hinders the model's ability to leverage structural inductive biases, especially in tasks such as retrieval-augmented generation (RAG) and reasoning on data with native graph structures, where inter-segment dependencies are crucial. We introduce Graph-KV with the potential to overcome this limitation. Graph-KV leverages the KV-cache of text segments as condensed representations and governs their interaction through structural inductive biases. In this framework, 'target' segments selectively attend only to the KV-caches of their designated 'source' segments, rather than all preceding segments in a serialized sequence. This approach induces a graph-structured block mask, sparsifying attention and enabling a message-passing-like step within the LLM. Furthermore, strategically allocated positional encodings for source and target segments reduce positional bias and context window consumption. We evaluate Graph-KV across three scenarios: (1) seven RAG benchmarks spanning direct inference, multi-hop reasoning, and long-document understanding; (2) Arxiv-QA, a novel academic paper QA task with full-text scientific papers structured as citation ego-graphs; and (3) paper topic classification within a citation network. By effectively reducing positional bias and harnessing structural inductive biases, Graph-KV substantially outperforms baselines, including standard costly sequential encoding, across various settings. Code and the Graph-KV data are publicly available.
Via

Jun 06, 2025
Abstract:Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in automated front-end engineering, e.g., generating UI code from visual designs. However, existing front-end UI code generation benchmarks have the following limitations: (1) While framework-based development becomes predominant in modern front-end programming, current benchmarks fail to incorporate mainstream development frameworks. (2) Existing evaluations focus solely on the UI code generation task, whereas practical UI development involves several iterations, including refining editing, and repairing issues. (3) Current benchmarks employ unidimensional evaluation, lacking investigation into influencing factors like task difficulty, input context variations, and in-depth code-level analysis. To bridge these gaps, we introduce DesignBench, a multi-framework, multi-task evaluation benchmark for assessing MLLMs' capabilities in automated front-end engineering. DesignBench encompasses three widely-used UI frameworks (React, Vue, and Angular) alongside vanilla HTML/CSS, and evaluates on three essential front-end tasks (generation, edit, and repair) in real-world development workflows. DesignBench contains 900 webpage samples spanning over 11 topics, 9 edit types, and 6 issue categories, enabling detailed analysis of MLLM performance across multiple dimensions. Our systematic evaluation reveals critical insights into MLLMs' framework-specific limitations, task-related bottlenecks, and performance variations under different conditions, providing guidance for future research in automated front-end development. Our code and data are available at https://github.com/WebPAI/DesignBench.
Via

May 27, 2025
Abstract:Scientific paper retrieval is essential for supporting literature discovery and research. While dense retrieval methods demonstrate effectiveness in general-purpose tasks, they often fail to capture fine-grained scientific concepts that are essential for accurate understanding of scientific queries. Recent studies also use large language models (LLMs) for query understanding; however, these methods often lack grounding in corpus-specific knowledge and may generate unreliable or unfaithful content. To overcome these limitations, we propose SemRank, an effective and efficient paper retrieval framework that combines LLM-guided query understanding with a concept-based semantic index. Each paper is indexed using multi-granular scientific concepts, including general research topics and detailed key phrases. At query time, an LLM identifies core concepts derived from the corpus to explicitly capture the query's information need. These identified concepts enable precise semantic matching, significantly enhancing retrieval accuracy. Experiments show that SemRank consistently improves the performance of various base retrievers, surpasses strong existing LLM-based baselines, and remains highly efficient.
Via

May 29, 2025
Abstract:Theorem proving serves as a major testbed for evaluating complex reasoning abilities in large language models (LLMs). However, traditional automated theorem proving (ATP) approaches rely heavily on formal proof systems that poorly align with LLMs' strength derived from informal, natural language knowledge acquired during pre-training. In this work, we propose DeepTheorem, a comprehensive informal theorem-proving framework exploiting natural language to enhance LLM mathematical reasoning. DeepTheorem includes a large-scale benchmark dataset consisting of 121K high-quality IMO-level informal theorems and proofs spanning diverse mathematical domains, rigorously annotated for correctness, difficulty, and topic categories, accompanied by systematically constructed verifiable theorem variants. We devise a novel reinforcement learning strategy (RL-Zero) explicitly tailored to informal theorem proving, leveraging the verified theorem variants to incentivize robust mathematical inference. Additionally, we propose comprehensive outcome and process evaluation metrics examining proof correctness and the quality of reasoning steps. Extensive experimental analyses demonstrate DeepTheorem significantly improves LLM theorem-proving performance compared to existing datasets and supervised fine-tuning protocols, achieving state-of-the-art accuracy and reasoning quality. Our findings highlight DeepTheorem's potential to fundamentally advance automated informal theorem proving and mathematical exploration.
Via

May 28, 2025
Abstract:Large Reasoning Models (LRMs) have made significant progress in mathematical capabilities in recent times. However, these successes have been primarily confined to competition-level problems. In this work, we propose AI Mathematician (AIM) framework, which harnesses the reasoning strength of LRMs to support frontier mathematical research. We have identified two critical challenges of mathematical research compared to competition, {\it the intrinsic complexity of research problems} and {\it the requirement of procedural rigor}. To address these challenges, AIM incorporates two core strategies: an exploration mechanism to foster longer solution paths, and the pessimistic reasonable verification method to ensure reliability. This early version of AIM already exhibits strong capability in tackling research-level tasks. We conducted extensive experiments across several real-world mathematical topics and obtained promising results. AIM is able to autonomously construct substantial portions of proofs and uncover non-trivial insights within each research area. These findings highlight the potential of LRMs in mathematical discovery and suggest that LRM-based agent systems could significantly accelerate mathematical research in the future.
* 95 pages, 1 figure
Via

May 30, 2025
Abstract:Malware detection and classification remains a topic of concern for cybersecurity, since it is becoming common for attackers to use advanced obfuscation on their malware to stay undetected. Conventional static analysis is not effective against polymorphic and metamorphic malware as these change their appearance without modifying their behavior, thus defying the analysis by code structure alone. This makes it important to use dynamic detection that monitors malware behavior at runtime. In this paper, we present a dynamic malware categorization framework that extracts API argument calls at the runtime execution of Windows Portable Executable (PE) files. Extracting and encoding the dynamic features of API names, argument return values, and other relative features, we convert raw behavioral data to temporal patterns. To enhance feature portrayal, the generated patterns are subsequently converted into grayscale pictures using a magma colormap. These improved photos are used to teach a Convolutional Neural Network (CNN) model discriminative features, which allows for reliable and accurate malware classification. Results from experiments indicate that our method, with an average accuracy of 98.36% is effective in classifying different classes of malware and benign by integrating dynamic analysis and deep learning. It not only achieves high classification accuracy but also demonstrates significant resilience against typical evasion strategies.
Via
