Abstract:This comprehensive study evaluates the performance of OpenAI's o1-preview large language model across a diverse array of complex reasoning tasks, spanning multiple domains, including computer science, mathematics, natural sciences, medicine, linguistics, and social sciences. Through rigorous testing, o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance in areas ranging from coding challenges to scientific reasoning and from language processing to creative problem-solving. Key findings include: -83.3% success rate in solving complex competitive programming problems, surpassing many human experts. -Superior ability in generating coherent and accurate radiology reports, outperforming other evaluated models. -100% accuracy in high school-level mathematical reasoning tasks, providing detailed step-by-step solutions. -Advanced natural language inference capabilities across general and specialized domains like medicine. -Impressive performance in chip design tasks, outperforming specialized models in areas such as EDA script generation and bug analysis. -Remarkable proficiency in anthropology and geology, demonstrating deep understanding and reasoning in these specialized fields. -Strong capabilities in quantitative investing. O1 has comprehensive financial knowledge and statistical modeling skills. -Effective performance in social media analysis, including sentiment analysis and emotion recognition. The model excelled particularly in tasks requiring intricate reasoning and knowledge integration across various fields. While some limitations were observed, including occasional errors on simpler problems and challenges with certain highly specialized concepts, the overall results indicate significant progress towards artificial general intelligence.
Abstract:Recently, both closed-source LLMs and open-source communities have made significant strides, outperforming humans in various general domains. However, their performance in specific professional fields such as medicine, especially within the open-source community, remains suboptimal due to the complexity of medical knowledge. We propose Aquila-Med, a bilingual medical LLM based on Aquila, addressing these challenges through continue pre-training, supervised fine-tuning (SFT), and reinforcement learning from human feedback (RLHF). We construct a large-scale Chinese and English medical dataset for continue pre-training and a high-quality SFT dataset, covering extensive medical specialties. Additionally, we develop a high-quality Direct Preference Optimization (DPO) dataset for further alignment. Aquila-Med achieves notable results across single-turn, multi-turn dialogues, and medical multiple-choice questions, demonstrating the effectiveness of our approach. We open-source the datasets and the entire training process, contributing valuable resources to the research community. Our models and datasets will released at https://huggingface.co/BAAI/AquilaMed-RL.
Abstract:The current paper studies the problem of minimizing a loss $f(\boldsymbol{x})$ subject to constraints of the form $\boldsymbol{D}\boldsymbol{x} \in S$, where $S$ is a closed set, convex or not, and $\boldsymbol{D}$ is a fusion matrix. Fusion constraints can capture smoothness, sparsity, or more general constraint patterns. To tackle this generic class of problems, we combine the Beltrami-Courant penalty method of optimization with the proximal distance principle. The latter is driven by minimization of penalized objectives $f(\boldsymbol{x})+\frac{\rho}{2}\text{dist}(\boldsymbol{D}\boldsymbol{x},S)^2$ involving large tuning constants $\rho$ and the squared Euclidean distance of $\boldsymbol{D}\boldsymbol{x}$ from $S$. The next iterate $\boldsymbol{x}_{n+1}$ of the corresponding proximal distance algorithm is constructed from the current iterate $\boldsymbol{x}_n$ by minimizing the majorizing surrogate function $f(\boldsymbol{x})+\frac{\rho}{2}\|\boldsymbol{D}\boldsymbol{x}-\mathcal{P}_S(\boldsymbol{D}\boldsymbol{x}_n)\|^2$. For fixed $\rho$ and convex $f(\boldsymbol{x})$ and $S$, we prove convergence, provide convergence rates, and demonstrate linear convergence under stronger assumptions. We also construct a steepest descent (SD) variant to avoid costly linear system solves. To benchmark our algorithms, we adapt the alternating direction method of multipliers (ADMM) and compare on extensive numerical tests including problems in metric projection, convex regression, convex clustering, total variation image denoising, and projection of a matrix to one that has a good condition number. Our experiments demonstrate the superior speed and acceptable accuracy of the steepest variant on high-dimensional problems. Julia code to replicate all of our experiments can be found at https://github.com/alanderos91/ProximalDistanceAlgorithms.jl.
Abstract:Image retrieval utilizes image descriptors to retrieve the most similar images to a given query image. Convolutional neural network (CNN) is becoming the dominant approach to extract image descriptors for image retrieval. For low-power hardware implementation of image retrieval, the drawback of CNN-based feature descriptor is that it requires hundreds of megabytes of storage. To address this problem, this paper applies deep model quantization and compression to CNN in ASIC chip for image retrieval. It is demonstrated that the CNN-based features descriptor can be extracted using as few as 2-bit weights quantization to deliver a similar performance as floating-point model for image retrieval. In addition, to implement CNN in ASIC, especially for large scale images, the limited buffer size of chips should be considered. To retrieve large scale images, we propose an improved pooling strategy, region nested invariance pooling (RNIP), which uses cropped sub-images for CNN. Testing results on chip show that integrating RNIP with the proposed 2-bit CNN model compression approach is capable of retrieving large scale images.
Abstract:We propose a novel linear discriminant analysis approach for the classification of high-dimensional matrix-valued data that commonly arises from imaging studies. Motivated by the equivalence of the conventional linear discriminant analysis and the ordinary least squares, we consider an efficient nuclear norm penalized regression that encourages a low-rank structure. Theoretical properties including a non-asymptotic risk bound and a rank consistency result are established. Simulation studies and an application to electroencephalography data show the superior performance of the proposed method over the existing approaches.
Abstract:Large scale deep Convolution Neural Networks (CNNs) increasingly demands the computing power. It is key for researchers to own a great powerful computing platform to leverage deep learning (DL) advancing.On the other hand, as the commonly-used accelerator, the commodity GPUs cards of new generations are more and more expensive. Consequently, it is of importance to design an affordable distributed heterogeneous system that provides powerful computational capacity and develop a well-suited software that efficiently utilizes its computational capacity. In this paper, we present our co-design distributed system including a peta-scale GPU cluster, called "Manoa". Based on properties and topology of Manoa, we first propose job server framework and implement it, named "MiMatrix". The central node of MiMatrix, referred to as the job server, undertakes all of controlling, scheduling and monitoring, and I/O tasks without weight data transfer for AllReduce processing in each iteration. Therefore, MiMatrix intrinsically solves the bandwidth bottleneck of central node in parameter server framework that is widely used in distributed DL tasks. Meanwhile, we also propose a new AllReduce algorithm, GPUDirect RDMA-Aware AllReduce~(GDRAA), in which both computation and handshake message are O(1) and the number of synchronization is two in each iteration that is a theoretical minimum number. Owe to the dedicated co-design distributed system, MiMatrix efficiently makes use of the Manoa's computational capacity and bandwidth. We benchmark Manoa Resnet50 and Resenet101 on Imagenet-1K dataset. Some of results have demonstrated state-of-the-art.
Abstract:Cluster analysis is a fundamental tool for pattern discovery of complex heterogeneous data. Prevalent clustering methods mainly focus on vector or matrix-variate data and are not applicable to general-order tensors, which arise frequently in modern scientific and business applications. Moreover, there is a gap between statistical guarantees and computational efficiency for existing tensor clustering solutions due to the nature of their non-convex formulations. In this work, we bridge this gap by developing a provable convex formulation of tensor co-clustering. Our convex co-clustering (CoCo) estimator enjoys stability guarantees and is both computationally and storage efficient. We further establish a non-asymptotic error bound for the CoCo estimator, which reveals a surprising "blessing of dimensionality" phenomenon that does not exist in vector or matrix-variate cluster analysis. Our theoretical findings are supported by extensive simulated studies. Finally, we apply the CoCo estimator to the cluster analysis of advertisement click tensor data from a major online company. Our clustering results provide meaningful business insights to improve advertising effectiveness.
Abstract:In recent years, deep neural network exhibits its powerful superiority on information discrimination in many computer vision applications. However, the capacity of deep neural network architecture is still a mystery to the researchers. Intuitively, larger capacity of neural network can always deposit more information to improve the discrimination ability of the model. But, the learnable parameter scale is not feasible to estimate the capacity of deep neural network. Due to the overfitting, directly increasing hidden nodes number and hidden layer number are already demonstrated not necessary to effectively increase the network discrimination ability. In this paper, we propose a novel measurement, named "total valid bits", to evaluate the capacity of deep neural networks for exploring how to quantitatively understand the deep learning and the insights behind its super performance. Specifically, our scheme to retrieve the total valid bits incorporates the skilled techniques in both training phase and inference phase. In the network training, we design decimal weight regularization and 8-bit forward quantization to obtain the integer-oriented network representations. Moreover, we develop adaptive-bitwidth and non-uniform quantization strategy in the inference phase to find the neural network capacity, total valid bits. By allowing zero bitwidth, our adaptive-bitwidth quantization can execute the model reduction and valid bits finding simultaneously. In our extensive experiments, we first demonstrate that our total valid bits is a good indicator of neural network capacity. We also analyze the impact on network capacity from the network architecture and advanced training skills, such as dropout and batch normalization.
Abstract:In this paper, we introduce a new and challenging large-scale food image dataset called "ChineseFoodNet", which aims to automatically recognizing pictured Chinese dishes. Most of the existing food image datasets collected food images either from recipe pictures or selfie. In our dataset, images of each food category of our dataset consists of not only web recipe and menu pictures but photos taken from real dishes, recipe and menu as well. ChineseFoodNet contains over 180,000 food photos of 208 categories, with each category covering a large variations in presentations of same Chinese food. We present our efforts to build this large-scale image dataset, including food category selection, data collection, and data clean and label, in particular how to use machine learning methods to reduce manual labeling work that is an expensive process. We share a detailed benchmark of several state-of-the-art deep convolutional neural networks (CNNs) on ChineseFoodNet. We further propose a novel two-step data fusion approach referred as "TastyNet", which combines prediction results from different CNNs with voting method. Our proposed approach achieves top-1 accuracies of 81.43% on the validation set and 81.55% on the test set, respectively. The latest dataset is public available for research and can be achieved at https://sites.google.com/view/chinesefoodnet.
Abstract:We compare alternative computing strategies for solving the constrained lasso problem. As its name suggests, the constrained lasso extends the widely-used lasso to handle linear constraints, which allow the user to incorporate prior information into the model. In addition to quadratic programming, we employ the alternating direction method of multipliers (ADMM) and also derive an efficient solution path algorithm. Through both simulations and real data examples, we compare the different algorithms and provide practical recommendations in terms of efficiency and accuracy for various sizes of data. We also show that, for an arbitrary penalty matrix, the generalized lasso can be transformed to a constrained lasso, while the converse is not true. Thus, our methods can also be used for estimating a generalized lasso, which has wide-ranging applications. Code for implementing the algorithms is freely available in the Matlab toolbox SparseReg.