Abstract:Entity structure extraction, which aims to extract entities and their associated attribute-value structures from text, is an essential task for text understanding and knowledge graph construction. Existing methods based on large language models (LLMs) typically rely heavily on predefined entity attribute schemas or annotated datasets, often leading to incomplete extraction results. To address these challenges, we introduce Zero-Shot Open-schema Entity Structure Discovery (ZOES), a novel approach to entity structure extraction that does not require any schema or annotated samples. ZOES operates via a principled mechanism of enrichment, refinement, and unification, based on the insight that an entity and its associated structure are mutually reinforcing. Experiments demonstrate that ZOES consistently enhances LLMs' ability to extract more complete entity structures across three different domains, showcasing both the effectiveness and generalizability of the method. These findings suggest that such an enrichment, refinement, and unification mechanism may serve as a principled approach to improving the quality of LLM-based entity structure discovery in various scenarios.
Abstract:Scientific paper retrieval is essential for supporting literature discovery and research. While dense retrieval methods demonstrate effectiveness in general-purpose tasks, they often fail to capture fine-grained scientific concepts that are essential for accurate understanding of scientific queries. Recent studies also use large language models (LLMs) for query understanding; however, these methods often lack grounding in corpus-specific knowledge and may generate unreliable or unfaithful content. To overcome these limitations, we propose SemRank, an effective and efficient paper retrieval framework that combines LLM-guided query understanding with a concept-based semantic index. Each paper is indexed using multi-granular scientific concepts, including general research topics and detailed key phrases. At query time, an LLM identifies core concepts derived from the corpus to explicitly capture the query's information need. These identified concepts enable precise semantic matching, significantly enhancing retrieval accuracy. Experiments show that SemRank consistently improves the performance of various base retrievers, surpasses strong existing LLM-based baselines, and remains highly efficient.
Abstract:While significant progress has been made with dual- and bi-encoder dense retrievers, they often struggle on queries with logical connectives, a use case that is often overlooked yet important in downstream applications. Current dense retrievers struggle with such queries, such that the retrieved results do not respect the logical constraints implied in the queries. To address this challenge, we introduce LogiCoL, a logically-informed contrastive learning objective for dense retrievers. LogiCoL builds upon in-batch supervised contrastive learning, and learns dense retrievers to respect the subset and mutually-exclusive set relation between query results via two sets of soft constraints expressed via t-norm in the learning objective. We evaluate the effectiveness of LogiCoL on the task of entity retrieval, where the model is expected to retrieve a set of entities in Wikipedia that satisfy the implicit logical constraints in the query. We show that models trained with LogiCoL yield improvement both in terms of retrieval performance and logical consistency in the results. We provide detailed analysis and insights to uncover why queries with logical connectives are challenging for dense retrievers and why LogiCoL is most effective.
Abstract:Academic paper search is an essential task for efficient literature discovery and scientific advancement. While dense retrieval has advanced various ad-hoc searches, it often struggles to match the underlying academic concepts between queries and documents, which is critical for paper search. To enable effective academic concept matching for paper search, we propose Taxonomy-guided Semantic Indexing (TaxoIndex) framework. TaxoIndex extracts key concepts from papers and organizes them as a semantic index guided by an academic taxonomy, and then leverages this index as foundational knowledge to identify academic concepts and link queries and documents. As a plug-and-play framework, TaxoIndex can be flexibly employed to enhance existing dense retrievers. Extensive experiments show that TaxoIndex brings significant improvements, even with highly limited training data, and greatly enhances interpretability.
Abstract:Long-context modeling is one of the critical capabilities of language AI for digesting and reasoning over complex information pieces. In practice, long-context capabilities are typically built into a pre-trained language model~(LM) through a carefully designed context extension stage, with the goal of producing generalist long-context capabilities. In our preliminary experiments, however, we discovered that the current open-weight generalist long-context models are still lacking in practical long-context processing tasks. While this means perfectly effective long-context modeling demands task-specific data, the cost can be prohibitive. In this paper, we draw inspiration from how humans process a large body of information: a lossy \textbf{retrieval} stage ranks a large set of documents while the reader ends up reading deeply only the top candidates. We build an \textbf{automatic} data synthesis pipeline that mimics this process using short-context LMs. The short-context LMs are further tuned using these self-generated data to obtain task-specific long-context capabilities. Similar to how pre-training learns from imperfect data, we hypothesize and further demonstrate that the short-context model can bootstrap over the synthetic data, outperforming not only long-context generalist models but also the retrieval and read pipeline used to synthesize the training data in real-world tasks such as long-context retrieval augmented generation.
Abstract:Episodic structures are inherently interpretable and adaptable to evolving large-scale key events. However, state-of-the-art automatic event detection methods overlook event episodes and, therefore, struggle with these crucial characteristics. This paper introduces a novel task, episode detection, aimed at identifying episodes from a news corpus containing key event articles. An episode describes a cohesive cluster of core entities (e.g., "protesters", "police") performing actions at a specific time and location. Furthermore, an episode is a significant part of a larger group of episodes under a particular key event. Automatically detecting episodes is challenging because, unlike key events and atomic actions, we cannot rely on explicit mentions of times and locations to distinguish between episodes or use semantic similarity to merge inconsistent episode co-references. To address these challenges, we introduce EpiMine, an unsupervised episode detection framework that (1) automatically identifies the most salient, key-event-relevant terms and segments, (2) determines candidate episodes in an article based on natural episodic partitions estimated through shifts in discriminative term combinations, and (3) refines and forms final episode clusters using large language model-based reasoning on the candidate episodes. We construct three diverse, real-world event datasets annotated at the episode level. EpiMine outperforms all baselines on these datasets by an average 59.2% increase across all metrics.
Abstract:Hierarchical text classification aims to categorize each document into a set of classes in a label taxonomy. Most earlier works focus on fully or semi-supervised methods that require a large amount of human annotated data which is costly and time-consuming to acquire. To alleviate human efforts, in this paper, we work on hierarchical text classification with the minimal amount of supervision: using the sole class name of each node as the only supervision. Recently, large language models (LLM) show competitive performance on various tasks through zero-shot prompting, but this method performs poorly in the hierarchical setting, because it is ineffective to include the large and structured label space in a prompt. On the other hand, previous weakly-supervised hierarchical text classification methods only utilize the raw taxonomy skeleton and ignore the rich information hidden in the text corpus that can serve as additional class-indicative features. To tackle the above challenges, we propose TELEClass, Taxonomy Enrichment and LLM-Enhanced weakly-supervised hierarchical text classification, which (1) automatically enriches the label taxonomy with class-indicative topical terms mined from the corpus to facilitate classifier training and (2) utilizes LLMs for both data annotation and creation tailored for the hierarchical label space. Experiments show that TELEClass can outperform previous weakly-supervised hierarchical text classification methods and LLM-based zero-shot prompting methods on two public datasets.
Abstract:Entity Set Expansion, Taxonomy Expansion, and Seed-Guided Taxonomy Construction are three representative tasks that can be used to automatically populate an existing taxonomy with new entities. However, previous approaches often address these tasks separately with heterogeneous techniques, lacking a unified perspective. To tackle this issue, in this paper, we identify the common key skills needed for these tasks from the view of taxonomy structures -- finding 'siblings' and finding 'parents' -- and propose a unified taxonomy-guided instruction tuning framework to jointly solve the three tasks. To be specific, by leveraging the existing taxonomy as a rich source of entity relationships, we utilize instruction tuning to fine-tune a large language model to generate parent and sibling entities. Extensive experiments on multiple benchmark datasets demonstrate the effectiveness of TaxoInstruct, which outperforms task-specific baselines across all three tasks.
Abstract:Accurately typing entity mentions from text segments is a fundamental task for various natural language processing applications. Many previous approaches rely on massive human-annotated data to perform entity typing. Nevertheless, collecting such data in highly specialized science and engineering domains (e.g., software engineering and security) can be time-consuming and costly, without mentioning the domain gaps between training and inference data if the model needs to be applied to confidential datasets. In this paper, we study the task of seed-guided fine-grained entity typing in science and engineering domains, which takes the name and a few seed entities for each entity type as the only supervision and aims to classify new entity mentions into both seen and unseen types (i.e., those without seed entities). To solve this problem, we propose SEType which first enriches the weak supervision by finding more entities for each seen type from an unlabeled corpus using the contextualized representations of pre-trained language models. It then matches the enriched entities to unlabeled text to get pseudo-labeled samples and trains a textual entailment model that can make inferences for both seen and unseen types. Extensive experiments on two datasets covering four domains demonstrate the effectiveness of SEType in comparison with various baselines.
Abstract:Fine-grained entity typing (FET) is the task of identifying specific entity types at a fine-grained level for entity mentions based on their contextual information. Conventional methods for FET require extensive human annotation, which is time-consuming and costly. Recent studies have been developing weakly supervised or zero-shot approaches. We study the setting of zero-shot FET where only an ontology is provided. However, most existing ontology structures lack rich supporting information and even contain ambiguous relations, making them ineffective in guiding FET. Recently developed language models, though promising in various few-shot and zero-shot NLP tasks, may face challenges in zero-shot FET due to their lack of interaction with task-specific ontology. In this study, we propose OnEFET, where we (1) enrich each node in the ontology structure with two types of extra information: instance information for training sample augmentation and topic information to relate types to contexts, and (2) develop a coarse-to-fine typing algorithm that exploits the enriched information by training an entailment model with contrasting topics and instance-based augmented training samples. Our experiments show that OnEFET achieves high-quality fine-grained entity typing without human annotation, outperforming existing zero-shot methods by a large margin and rivaling supervised methods.