



Abstract:Drug-drug interactions (DDIs) remain a major source of preventable harm, and many clinically important mechanisms are still unknown. Existing models either rely on pharmacologic knowledge graphs (KGs), which fail on unseen drugs, or on electronic health records (EHRs), which are noisy, temporal, and site-dependent. We introduce, to our knowledge, the first system that conditions KG relation scoring on patient-level EHR context and distills that reasoning into an EHR-only model for zero-shot inference. A fusion "Teacher" learns mechanism-specific relations for drug pairs represented in both sources, while a distilled "Student" generalizes to new or rarely used drugs without KG access at inference. Both operate under a shared ontology (set) of pharmacologic mechanisms (drug relations) to produce interpretable, auditable alerts rather than opaque risk scores. Trained on a multi-institution EHR corpus paired with a curated DrugBank DDI graph, and evaluated using a clinically aligned, decision-focused protocol with leakage-safe negatives that avoid artificially easy pairs, the system maintains precision across multi-institutuion test data, produces mechanism-specific, clinically consistent predictions, reduces false alerts (higher precision) at comparable overall detection performance (F1), and misses fewer true interactions compared to prior methods. Case studies further show zero-shot identification of clinically recognized CYP-mediated and pharmacodynamic mechanisms for drugs absent from the KG, supporting real-world use in clinical decision support and pharmacovigilance.
Abstract:Navigating the vast and rapidly growing body of scientific literature is a formidable challenge for aspiring researchers. Current approaches to supporting research idea generation often rely on generic large language models (LLMs). While LLMs are effective at aiding comprehension and summarization, they often fall short in guiding users toward practical research ideas due to their limitations. In this study, we present a novel structural framework for research ideation. Our framework, The Budget AI Researcher, uses retrieval-augmented generation (RAG) chains, vector databases, and topic-guided pairing to recombine concepts from hundreds of machine learning papers. The system ingests papers from nine major AI conferences, which collectively span the vast subfields of machine learning, and organizes them into a hierarchical topic tree. It uses the tree to identify distant topic pairs, generate novel research abstracts, and refine them through iterative self-evaluation against relevant literature and peer reviews, generating and refining abstracts that are both grounded in real-world research and demonstrably interesting. Experiments using LLM-based metrics indicate that our method significantly improves the concreteness of generated research ideas relative to standard prompting approaches. Human evaluations further demonstrate a substantial enhancement in the perceived interestingness of the outputs. By bridging the gap between academic data and creative generation, the Budget AI Researcher offers a practical, free tool for accelerating scientific discovery and lowering the barrier for aspiring researchers. Beyond research ideation, this approach inspires solutions to the broader challenge of generating personalized, context-aware outputs grounded in evolving real-world knowledge.