What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
Aug 12, 2025
Abstract:Counterfactual explanations (CFEs) offer a tangible and actionable way to explain recommendations by showing users a "what-if" scenario that demonstrates how small changes in their history would alter the system's output. However, existing CFE methods are susceptible to bias, generating explanations that might misalign with the user's actual preferences. In this paper, we propose a pre-processing step that leverages large language models to filter out-of-character history items before generating an explanation. In experiments on two public datasets, we focus on popularity bias and apply our approach to ACCENT, a neural CFE framework. We find that it creates counterfactuals that are more closely aligned with each user's popularity preferences than ACCENT alone.
Via

Aug 12, 2025
Abstract:As the volume of scientific publications grows exponentially, researchers increasingly face difficulties in locating relevant literature. Research Paper Recommender Systems have become vital tools to mitigate this information overload by delivering personalized suggestions. This survey provides a comprehensive analysis of Research Paper Recommender Systems developed between November 2021 and December 2024, building upon prior reviews in the field. It presents an extensive overview of the techniques and approaches employed, the datasets utilized, the evaluation metrics and procedures applied, and the status of both enduring and emerging challenges observed during the research. Unlike prior surveys, this survey goes beyond merely cataloguing techniques and models, providing a thorough examination of how these methods are implemented across different stages of the recommendation process. By furnishing a detailed and structured reference, this work aims to function as a consultative resource for the research community, supporting informed decision-making and guiding future investigations in the advances of effective Research Paper Recommender Systems.
Via

Aug 12, 2025
Abstract:Medical Lay Language Generation (MLLG) plays a vital role in improving the accessibility of complex scientific content for broader audiences. Recent literature to MLLG commonly employ parameter-efficient fine-tuning methods such as Low-Rank Adaptation (LoRA) to fine-tuning large language models (LLMs) using paired expert-lay language datasets. However, LoRA struggles with the challenges posed by multi-source heterogeneous MLLG datasets. Specifically, through a series of exploratory experiments, we reveal that standard LoRA fail to meet the requirement for semantic fidelity and diverse lay-style generation in MLLG task. To address these limitations, we propose Magical, an asymmetric LoRA architecture tailored for MLLG under heterogeneous data scenarios. Magical employs a shared matrix $A$ for abstractive summarization, along with multiple isolated matrices $B$ for diverse lay-style generation. To preserve semantic fidelity during the lay language generation process, Magical introduces a Semantic Invariance Constraint to mitigate semantic subspace shifts on matrix $A$. Furthermore, to better adapt to diverse lay-style generation, Magical incorporates the Recommendation-guided Switch, an externally interface to prompt the LLM to switch between different matrices $B$. Experimental results on three real-world lay language generation datasets demonstrate that Magical consistently outperforms prompt-based methods, vanilla LoRA, and its recent variants, while also reducing trainable parameters by 31.66%.
Via

Aug 12, 2025
Abstract:As the social implementation of AI has been steadily progressing, research and development related to AI security has also been increasing. However, existing studies have been limited to organizing related techniques, attacks, defenses, and risks in terms of specific domains or AI elements. Thus, it extremely difficult to understand the relationships among them and how negative impacts on stakeholders are brought about. In this paper, we argue that the knowledge, technologies, and social impacts related to AI security should be holistically organized to help understand relationships among them. To this end, we first develop an AI security map that holistically organizes interrelationships among elements related to AI security as well as negative impacts on information systems and stakeholders. This map consists of the two aspects, namely the information system aspect (ISA) and the external influence aspect (EIA). The elements that AI should fulfill within information systems are classified under the ISA. The EIA includes elements that affect stakeholders as a result of AI being attacked or misused. For each element, corresponding negative impacts are identified. By referring to the AI security map, one can understand the potential negative impacts, along with their causes and countermeasures. Additionally, our map helps clarify how the negative impacts on AI-based systems relate to those on stakeholders. We show some findings newly obtained by referring to our map. We also provide several recommendations and open problems to guide future AI security communities.
Via

Aug 12, 2025
Abstract:Route recommendation (RR) is a core task of route planning in the Amap app, with the goal of recommending the optimal route among candidate routes to users. Unlike traditional recommendation methods, insights into the local quality of routes and comparisons between candidate routes are crucial for enhancing recommendation performance but often overlooked in previous studies. To achieve these, we propose a novel model called Comprehensive Comparison Network (CCN). CCN not only uses query-level features (e.g. user features) and item-level features (e.g. route features, item embedding) that are common in traditional recommendations, but also introduces comparison-level features which describe the non-overlapping segments between different routes to capture the local quality of routes. The key component Comprehensive Comparison Block (CCB) in CCN is designed to enable comparisons between routes. CCB includes a Comprehensive Comparison Operator (CCO) and a multi-scenario MLP, which can update the representations of candidate routes based on a comprehensive comparison. By stacking multiple CCBs, CCN can determine the final scores of candidate routes and recommend the optimal one to the user. Additionally, since routes directly affect the costs and risks experienced by users, the RR model must be interpretable for online deployment. Therefore, we designed an interpretable pair scoring network to achieve interpretability. Both offline and online experiments demonstrate that CCN significantly improves RR performance and exhibits strong interpretability. CCN has been fully deployed in the Amap app for over a year, providing stable and optimal benefits for route recommendations.
Via

Aug 11, 2025
Abstract:Image de-identification is essential for the public sharing of medical images, particularly in the widely used Digital Imaging and Communications in Medicine (DICOM) format as required by various regulations and standards, including Health Insurance Portability and Accountability Act (HIPAA) privacy rules, the DICOM PS3.15 standard, and best practices recommended by the Cancer Imaging Archive (TCIA). The Medical Image De-Identification Benchmark (MIDI-B) Challenge at the 27th International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI 2024) was organized to evaluate rule-based DICOM image de-identification algorithms with a large dataset of clinical DICOM images. In this report, we explore the critical challenges of de-identifying DICOM images, emphasize the importance of removing personally identifiable information (PII) to protect patient privacy while ensuring the continued utility of medical data for research, diagnostics, and treatment, and provide a comprehensive overview of the standards and regulations that govern this process. Additionally, we detail the de-identification methods we applied - such as pixel masking, date shifting, date hashing, text recognition, text replacement, and text removal - to process datasets during the test phase in strict compliance with these standards. According to the final leaderboard of the MIDI-B challenge, the latest version of our solution algorithm correctly executed 99.92% of the required actions and ranked 2nd out of 10 teams that completed the challenge (from a total of 22 registered teams). Finally, we conducted a thorough analysis of the resulting statistics and discussed the limitations of current approaches and potential avenues for future improvement.
* 8 pages, 5 figures
Via

Aug 11, 2025
Abstract:Industrial recommender systems commonly rely on ensemble sorting (ES) to combine predictions from multiple behavioral objectives. Traditionally, this process depends on manually designed nonlinear transformations (e.g., polynomial or exponential functions) and hand-tuned fusion weights to balance competing goals -- an approach that is labor-intensive and frequently suboptimal in achieving Pareto efficiency. In this paper, we propose a novel Unified Monotonic Ranking Ensemble (UMRE) framework to address the limitations of traditional methods in ensemble sorting. UMRE replaces handcrafted transformations with Unconstrained Monotonic Neural Networks (UMNN), which learn expressive, strictly monotonic functions through the integration of positive neural integrals. Subsequently, a lightweight ranking model is employed to fuse the prediction scores, assigning personalized weights to each prediction objective. To balance competing goals, we further introduce a Pareto optimality strategy that adaptively coordinates task weights during training. UMRE eliminates manual tuning, maintains ranking consistency, and achieves fine-grained personalization. Experimental results on two public recommendation datasets (Kuairand and Tenrec) and online A/B tests demonstrate impressive performance and generalization capabilities.
Via

Aug 11, 2025
Abstract:Off-policy estimation (OPE) methods enable unbiased offline evaluation of recommender systems, directly estimating the online reward some target policy would have obtained, from offline data and with statistical guarantees. The theoretical elegance of the framework combined with practical successes have led to a surge of interest, with many competing estimators now available to practitioners and researchers. Among these, Doubly Robust methods provide a prominent strategy to combine value- and policy-based estimators. In this work, we take an alternative perspective to combine a set of OPE estimators and their associated confidence intervals into a single, more accurate estimate. Our approach leverages a correlated fixed-effects meta-analysis framework, explicitly accounting for dependencies among estimators that arise due to shared data. This yields a best linear unbiased estimate (BLUE) of the target policy's value, along with an appropriately conservative confidence interval that reflects inter-estimator correlation. We validate our method on both simulated and real-world data, demonstrating improved statistical efficiency over existing individual estimators.
* To appear in the Nineteenth ACM Conference on Recommender Systems
(RecSys '25)
Via

Aug 11, 2025
Abstract:Effective recommender systems demand dynamic user understanding, especially in complex, evolving environments. Traditional user profiling often fails to capture the nuanced, temporal contextual factors of user preferences, such as transient short-term interests and enduring long-term tastes. This paper presents an assessment of Large Language Models (LLMs) for generating semantically rich, time-aware user profiles. We do not propose a novel end-to-end recommendation architecture; instead, the core contribution is a systematic investigation into the degree of LLM effectiveness in capturing the dynamics of user context by disentangling short-term and long-term preferences. This approach, framing temporal preferences as dynamic user contexts for recommendations, adaptively fuses these distinct contextual components into comprehensive user embeddings. The evaluation across Movies&TV and Video Games domains suggests that while LLM-generated profiles offer semantic depth and temporal structure, their effectiveness for context-aware recommendations is notably contingent on the richness of user interaction histories. Significant gains are observed in dense domains (e.g., Movies&TV), whereas improvements are less pronounced in sparse environments (e.g., Video Games). This work highlights LLMs' nuanced potential in enhancing user profiling for adaptive, context-aware recommendations, emphasizing the critical role of dataset characteristics for practical applicability.
Via

Aug 11, 2025
Abstract:Though intelligent agents are supposed to improve human experience (or make it more efficient), it is hard from a human perspective to grasp the ethical values which are explicitly or implicitly embedded in an agent behaviour. This is the well-known problem of alignment, which refers to the challenge of designing AI systems that align with human values, goals and preferences. This problem is particularly challenging since most human ethical considerations refer to \emph{incommensurable} (i.e. non-measurable and/or incomparable) values and criteria. Consider, for instance, a medical agent prescribing a treatment to a cancerous patient. How could it take into account (and/or weigh) incommensurable aspects like the value of a human life and the cost of the treatment? Now, the alignment between human and artificial values is possible only if we define a common space where a metric can be defined and used. This paper proposes to extend to ethics the conventional Anything2vec approach, which has been successful in plenty of similar and hard-to-quantify domains (ranging from natural language processing to recommendation systems and graph analysis). This paper proposes a way to map an automatic agent decision-making (or control law) strategy to a multivariate vector representation, which can be used to compare and assess the alignment with human values. The Ethics2Vec method is first introduced in the case of an automatic agent performing binary decision-making. Then, a vectorisation of an automatic control law (like in the case of a self-driving car) is discussed to show how the approach can be extended to automatic control settings.
Via
