What is speech recognition? Speech recognition is the task of identifying words spoken aloud, analyzing the voice and language, and accurately transcribing the words.
Papers and Code
Oct 06, 2025
Abstract:Nearly half of the world's languages are endangered. Speech technologies such as Automatic Speech Recognition (ASR) are central to revival efforts, yet most languages remain unsupported because standard pipelines expect utterance-level supervised data. Speech data often exist for endangered languages but rarely match these formats. Manx Gaelic ($\sim$2,200 speakers), for example, has had transcribed speech since 1948, yet remains unsupported by modern systems. In this paper, we explore how little data, and in what form, is needed to build ASR for critically endangered languages. We show that a short-form pronunciation resource is a viable alternative, and that 40 minutes of such data produces usable ASR for Manx ($<$50\% WER). We replicate our approach, applying it to Cornish ($\sim$600 speakers), another critically endangered language. Results show that the barrier to entry, in quantity and form, is far lower than previously thought, giving hope to endangered language communities that cannot afford to meet the requirements arbitrarily imposed upon them.
Via

Oct 06, 2025
Abstract:Self-Supervised Learning (SSL) has gained traction for its ability to learn rich representations with low labeling costs, applicable across diverse downstream tasks. However, assessing the downstream-task performance remains challenging due to the cost of extra training and evaluation. Existing methods for task-agnostic evaluation also require extra training or hyperparameter tuning. We propose a novel evaluation metric using large language models (LLMs). By inputting discrete token sequences and minimal domain cues derived from SSL models into LLMs, we obtain the mean log-likelihood; these cues guide in-context learning, rendering the score more reliable without extra training or hyperparameter tuning. Experimental results show a correlation between LLM-based scores and automatic speech recognition task. Additionally, our findings reveal that LLMs not only functions as an SSL evaluation tools but also provides inference-time embeddings that are useful for speaker verification task.
* Accepted to ASRU 2025
Via

Oct 09, 2025
Abstract:The advancement of multimodal large language models has accelerated the development of speech-to-speech interaction systems. While natural monolingual interaction has been achieved, we find existing models exhibit deficiencies in language alignment. In our proposed Code-Switching Speech-to-Speech Benchmark (CS3-Bench), experiments on 7 mainstream models demonstrate a relative performance drop of up to 66% in knowledge-intensive question answering and varying degrees of misunderstanding in open-ended conversations. Starting from a model with severe performance deterioration, we propose both data constructions and training approaches to improve the language alignment capabilities, specifically employing Chain of Recognition (CoR) to enhance understanding and Keyword Highlighting (KH) to guide generation. Our approach improves the knowledge accuracy from 25.14% to 46.13%, with open-ended understanding rate from 64.5% to 86.5%, and significantly reduces pronunciation errors in the secondary language. CS3-Bench is available at https://huggingface.co/datasets/VocalNet/CS3-Bench.
Via

Oct 02, 2025
Abstract:Automatic Speech Recognition (ASR) systems often fail to accurately transcribe speech from Deaf and Hard of Hearing (DHH) individuals, especially during real-time conversations. Existing personalization approaches typically require extensive pre-recorded data and place the burden of adaptation on the DHH speaker. We present EvolveCaptions, a real-time, collaborative ASR adaptation system that supports in-situ personalization with minimal effort. Hearing participants correct ASR errors during live conversations. Based on these corrections, the system generates short, phonetically targeted prompts for the DHH speaker to record, which are then used to fine-tune the ASR model. In a study with 12 DHH and six hearing participants, EvolveCaptions reduced Word Error Rate (WER) across all DHH users within one hour of use, using only five minutes of recording time on average. Participants described the system as intuitive, low-effort, and well-integrated into communication. These findings demonstrate the promise of collaborative, real-time ASR adaptation for more equitable communication.
Via

Sep 26, 2025
Abstract:Recent studies have demonstrated the vulnerability of Automatic Speech Recognition systems to adversarial examples, which can deceive these systems into misinterpreting input speech commands. While previous research has primarily focused on white-box attacks with constrained optimizations, and transferability based black-box attacks against commercial Automatic Speech Recognition devices, this paper explores cost efficient white-box attack and non transferability black-box adversarial attacks on Automatic Speech Recognition systems, drawing insights from approaches such as Fast Gradient Sign Method and Zeroth-Order Optimization. Further, the novelty of the paper includes how poisoning attack can degrade the performances of state-of-the-art models leading to misinterpretation of audio signals. Through experimentation and analysis, we illustrate how hybrid models can generate subtle yet impactful adversarial examples with very little perturbation having Signal Noise Ratio of 35dB that can be generated within a minute. These vulnerabilities of state-of-the-art open source model have practical security implications, and emphasize the need for adversarial security.
Via

Sep 26, 2025
Abstract:We present a wearable, fully-dry, and ultra-low power EMG system for silent speech recognition, integrated into a textile neckband to enable comfortable, non-intrusive use. The system features 14 fully-differential EMG channels and is based on the BioGAP-Ultra platform for ultra-low power (22 mW) biosignal acquisition and wireless transmission. We evaluate its performance on eight speech commands under both vocalized and silent articulation, achieving average classification accuracies of 87$\pm$3% and 68$\pm$3% respectively, with a 5-fold CV approach. To mimic everyday-life conditions, we introduce session-to-session variability by repositioning the neckband between sessions, achieving leave-one-session-out accuracies of 64$\pm$18% and 54$\pm$7% for the vocalized and silent experiments, respectively. These results highlight the robustness of the proposed approach and the promise of energy-efficient silent-speech decoding.
* 4 pages, 4 figures
Via

Sep 19, 2025
Abstract:Audio-Visual Speech Recognition (AVSR) models have surpassed their audio-only counterparts in terms of performance. However, the interpretability of AVSR systems, particularly the role of the visual modality, remains under-explored. In this paper, we apply several interpretability techniques to examine how visemes are encoded in AV-HuBERT a state-of-the-art AVSR model. First, we use t-distributed Stochastic Neighbour Embedding (t-SNE) to visualize learned features, revealing natural clustering driven by visual cues, which is further refined by the presence of audio. Then, we employ probing to show how audio contributes to refining feature representations, particularly for visemes that are visually ambiguous or under-represented. Our findings shed light on the interplay between modalities in AVSR and could point to new strategies for leveraging visual information to improve AVSR performance.
* Accepted into Automatic Speech Recognition and Understanding- ASRU
2025
Via

Sep 19, 2025
Abstract:Personalizing Automatic Speech Recognition (ASR) for dysarthric speech is crucial but challenging due to training and storing of individual user adapters. We propose a hybrid meta-training method for a single model, excelling in zero-shot and few-shot on-the-fly personalization via in-context learning (ICL). Measuring Word Error Rate (WER) on state-of-the-art subsets, the model achieves 13.9% WER on Euphonia which surpasses speaker-independent baselines (17.5% WER) and rivals user-specific personalized models. On SAP Test 1, its 5.3% WER significantly bests the 8% from even personalized adapters. We also demonstrate the importance of example curation, where an oracle text-similarity method shows 5 curated examples can achieve performance similar to 19 randomly selected ones, highlighting a key area for future efficiency gains. Finally, we conduct data ablations to measure the data efficiency of this approach. This work presents a practical, scalable, and personalized solution.
Via

Sep 19, 2025
Abstract:Target Speaker Automatic Speech Recognition (TS-ASR) aims to transcribe the speech of a specified target speaker from multi-speaker mixtures in cocktail party scenarios. Recent advancement of Large Audio-Language Models (LALMs) has already brought some new insights to TS-ASR. However, significant room for optimization remains for the TS-ASR task within the LALMs architecture. While Chain of Thoughts (CoT) and Reinforcement Learning (RL) have proven effective in certain speech tasks, TS-ASR, which requires the model to deeply comprehend speech signals, differentiate various speakers, and handle overlapping utterances is particularly well-suited to a reasoning-guided approach. Therefore, we propose a novel framework that incorporates CoT and RL training into TS-ASR for performance improvement. A novel CoT dataset of TS-ASR is constructed, and the TS-ASR model is first trained on regular data and then fine-tuned on CoT data. Finally, the model is further trained with RL using selected data to enhance generalized reasoning capabilities. Experiment results demonstrate a significant improvement of TS-ASR performance with CoT and RL training, establishing a state-of-the-art performance compared with previous works of TS-ASR on comparable datasets.
* submitted to ICASSP 2026
Via

Sep 19, 2025
Abstract:The performance of speech emotion recognition (SER) is limited by the insufficient emotion information in unimodal systems and the feature alignment difficulties in multimodal systems. Recently, multimodal large language models (MLLMs) have made progress in SER. However, MLLMs still suffer from hallucination and misclassification problems in complex emotion reasoning. To address these problems, we propose an MLLM-based framework called EmoQ, which generates query embeddings that fuse multimodal information through an EmoQ-Former and uses multi-objective affective learning (MAL) to achieve co-optimization. The framework also provides a soft-prompt injection strategy to inject multimodal representations into the LLM. This end-to-end architecture achieves state-of-the-art performance on the IEMOCAP and MELD datasets, providing a new multimodal fusion paradigm for SER.
* 5 pages, 2 figures
Via
