Text classification is the process of categorizing text documents into predefined categories or labels.
Misinformation detection is a critical task that can benefit significantly from the integration of external knowledge, much like manual fact-checking. In this work, we propose a novel method for representing textual documents that facilitates the incorporation of information from a knowledge base. Our approach, Text Encoding with Graph (TEG), processes documents by extracting structured information in the form of a graph and encoding both the text and the graph for classification purposes. Through extensive experiments, we demonstrate that this hybrid representation enhances misinformation detection performance compared to using language models alone. Furthermore, we introduce TEGRA, an extension of our framework that integrates domain-specific knowledge, further enhancing classification accuracy in most cases.
Large-scale lyric corpora present unique challenges for data-driven analysis, including the absence of reliable annotations, multilingual content, and high levels of stylistic repetition. Most existing approaches rely on supervised classification, genre labels, or coarse document-level representations, limiting their ability to uncover latent semantic structure. We present a graph-based framework for unsupervised discovery and evaluation of semantic communities in K-pop lyrics using line-level semantic representations. By constructing a similarity graph over lyric texts and applying community detection, we uncover stable micro-theme communities without genre, artist, or language supervision. We further identify boundary-spanning songs via graph-theoretic bridge metrics and analyse their structural properties. Across multiple robustness settings, boundary-spanning lyrics exhibit higher lexical diversity and lower repetition compared to core community members, challenging the assumption that hook intensity or repetition drives cross-theme connectivity. Our framework is language-agnostic and applicable to unlabeled cultural text corpora.
Since FineWeb-Edu, data curation for LLM pretraining has predominantly relied on single scalar quality scores produced by small classifiers. A single score conflates multiple quality dimensions, prevents flexible filtering, and offers no interpretability. We introduce propella-1, a family of small multilingual LLMs (0.6B, 1.7B, 4B parameters) that annotate text documents across 18 properties organized into six categories: core content, classification, quality and value, audience and purpose, safety and compliance, and geographic relevance. The models support 57 languages and produce structured JSON annotations conforming to a predefined schema. Evaluated against a frontier commercial LLM as a reference annotator, the 4B model achieves higher agreement than much larger general-purpose models. We release propella-annotations, a dataset of over three billion document annotations covering major pretraining corpora including data from FineWeb-2, FinePDFs, HPLT 3.0, and Nemotron-CC. Using these annotations, we present a multi-dimensional compositional analysis of widely used pretraining datasets, revealing substantial differences in quality, reasoning depth, and content composition that single-score approaches cannot capture. All model weights and annotations are released under permissive, commercial-use licenses.
Of the over 7,000 languages spoken in the world, commercial language identification (LID) systems only reliably identify a few hundred in written form. Research-grade systems extend this coverage under certain circumstances, but for most languages coverage remains patchy or nonexistent. This position paper argues that this situation is largely self-imposed. In particular, it arises from a persistent framing of LID as decontextualized text classification, which obscures the central role of prior probability estimation and is reinforced by institutional incentives that favor global, fixed-prior models. We argue that improving coverage for tail languages requires rethinking LID as a routing problem and developing principled ways to incorporate environmental cues that make languages locally plausible.
Existing forgery detection methods are often limited to uni-modal or bi-modal settings, failing to handle the interleaved text, images, and videos prevalent in real-world misinformation. To bridge this gap, this paper targets to develop a unified framework for omnibus vision-language forgery detection and grounding. In this unified setting, the {interplay} between diverse modalities and the dual requirements of simultaneous detection and localization pose a critical ``difficulty bias`` problem: the simpler veracity classification task tends to dominate the gradients, leading to suboptimal performance in fine-grained grounding during multi-task optimization. To address this challenge, we propose \textbf{OmniVL-Guard}, a balanced reinforcement learning framework for omnibus vision-language forgery detection and grounding. Particularly, OmniVL-Guard comprises two core designs: Self-Evolving CoT Generatio and Adaptive Reward Scaling Policy Optimization (ARSPO). {Self-Evolving CoT Generation} synthesizes high-quality reasoning paths, effectively overcoming the cold-start challenge. Building upon this, {Adaptive Reward Scaling Policy Optimization (ARSPO)} dynamically modulates reward scales and task weights, ensuring a balanced joint optimization. Extensive experiments demonstrate that OmniVL-Guard significantly outperforms state-of-the-art methods and exhibits zero-shot robust generalization across out-of-domain scenarios.
Recent studies have shown that CLIP model's adversarial robustness in zero-shot classification tasks can be enhanced by adversarially fine-tuning its image encoder with adversarial examples (AEs), which are generated by minimizing the cosine similarity between images and a hand-crafted template (e.g., ''A photo of a {label}''). However, it has been shown that the cosine similarity between a single image and a single hand-crafted template is insufficient to measure the similarity for image-text pairs. Building on this, in this paper, we find that the AEs generated using cosine similarity may fail to fool CLIP when the similarity metric is replaced with semantically enriched alternatives, making the image encoder fine-tuned with these AEs less robust. To overcome this issue, we first propose a semantic-ensemble attack to generate semantic-aware AEs by minimizing the average similarity between the original image and an ensemble of refined textual descriptions. These descriptions are initially generated by a foundation model to capture core semantic features beyond hand-crafted templates and are then refined to reduce hallucinations. To this end, we propose Semantic-aware Adversarial Fine-Tuning (SAFT), which fine-tunes CLIP's image encoder with semantic-aware AEs. Extensive experiments show that SAFT outperforms current methods, achieving substantial improvements in zero-shot adversarial robustness across 16 datasets. Our code is available at: https://github.com/tmlr-group/SAFT.
Emotion classification plays a significant role in emotion prediction and harmful content detection. Recent advancements in NLP, particularly through large language models (LLMs), have greatly improved outcomes in this field. This study introduces ViGoEmotions -- a Vietnamese emotion corpus comprising 20,664 social media comments in which each comment is classified into 27 fine-grained distinct emotions. To evaluate the quality of the dataset and its impact on emotion classification, eight pre-trained Transformer-based models were evaluated under three preprocessing strategies: preserving original emojis with rule-based normalization, converting emojis into textual descriptions, and applying ViSoLex, a model-based lexical normalization system. Results show that converting emojis into text often improves the performance of several BERT-based baselines, while preserving emojis yields the best results for ViSoBERT and CafeBERT. In contrast, removing emojis generally leads to lower performance. ViSoBERT achieved the highest Macro F1-score of 61.50% and Weighted F1-score of 63.26%. Strong performance was also observed from CafeBERT and PhoBERT. These findings highlight that while the proposed corpus can support diverse architectures effectively, preprocessing strategies and annotation quality remain key factors influencing downstream performance.
Large language models (LLMs) such as GPT-4o and Claude Sonnet 4.5 have demonstrated strong capabilities in open-ended reasoning and generative language tasks, leading to their widespread adoption across a broad range of NLP applications. However, for structured text classification problems with fixed label spaces, model selection is often driven by predictive performance alone, overlooking operational constraints encountered in production systems. In this work, we present a systematic comparison of two contrasting paradigms for text classification: zero- and few-shot prompt-based large language models, and fully fine-tuned encoder-only architectures. We evaluate these approaches across four canonical benchmarks (IMDB, SST-2, AG News, and DBPedia), measuring predictive quality (macro F1), inference latency, and monetary cost. We frame model evaluation as a multi-objective decision problem and analyze trade-offs using Pareto frontier projections and a parameterized utility function reflecting different deployment regimes. Our results show that fine-tuned encoder-based models from the BERT family achieve competitive, and often superior, classification performance while operating at one to two orders of magnitude lower cost and latency compared to zero- and few-shot LLM prompting. Overall, our findings suggest that indiscriminate use of large language models for standard text classification workloads can lead to suboptimal system-level outcomes. Instead, fine-tuned encoders emerge as robust and efficient components for structured NLP pipelines, while LLMs are better positioned as complementary elements within hybrid architectures. We release all code, datasets, and evaluation protocols to support reproducibility and cost-aware NLP system design.
Fine-grained truck classification is critical for intelligent transportation systems (ITS), yet current LiDAR-based methods face scalability challenges due to their reliance on supervised deep learning and labor-intensive manual annotation. Vision-Language Models (VLMs) offer promising few-shot generalization, but their application to roadside LiDAR is limited by a modality gap between sparse 3D point clouds and dense 2D imagery. We propose a framework that bridges this gap by adapting off-the-shelf VLMs for fine-grained truck classification without parameter fine-tuning. Our new depth-aware image generation pipeline applies noise removal, spatial and temporal registration, orientation rectification, morphological operations, and anisotropic smoothing to transform sparse, occluded LiDAR scans into depth-encoded 2D visual proxies. Validated on a real-world dataset of 20 vehicle classes, our approach achieves competitive classification accuracy with as few as 16-30 examples per class, offering a scalable alternative to data-intensive supervised baselines. We further observe a "Semantic Anchor" effect: text-based guidance regularizes performance in ultra-low-shot regimes $k < 4$, but degrades accuracy in more-shot settings due to semantic mismatch. Furthermore, we demonstrate the efficacy of this framework as a Cold Start strategy, using VLM-generated labels to bootstrap lightweight supervised models. Notably, the few-shot VLM-based model achieves over correct classification rate of 75 percent for specific drayage categories (20ft, 40ft, and 53ft containers) entirely without the costly training or fine-tuning, significantly reducing the intensive demands of initial manual labeling, thus achieving a method of practical use in ITS applications.
The rapid advancement of generative AI has raised concerns about the authenticity of digital images, as highly realistic fake images can now be generated at low cost, potentially increasing societal risks. In response, several datasets have been established to train detection models aimed at distinguishing AI-generated images from real ones. However, existing datasets suffer from limited generalization, low image quality, overly simple prompts, and insufficient image diversity. To address these limitations, we propose a high-quality, large-scale dataset comprising over 730,000 images across multiple categories, including both real and AI-generated images. The generated images are synthesized via state-of-the-art methods, including text-to-image generation (guided by over 10,000 carefully designed prompts), image inpainting, image refinement, and face swapping. Each generated image is annotated with its generation method and category. Inpainting images further include binary masks to indicate inpainted regions, providing rich metadata for analysis. Compared to existing datasets, detection models trained on our dataset demonstrate superior generalization capabilities. Our dataset not only serves as a strong benchmark for evaluating detection methods but also contributes to advancing the robustness of AI-generated image detection techniques. Building upon this, we propose a lightweight detection method based on image noise entropy, which transforms the original image into an entropy tensor of Non-Local Means (NLM) noise before classification. Extensive experiments demonstrate that models trained on our dataset achieve strong generalization, and our method delivers competitive performance, establishing a solid baseline for future research. The dataset and source code are publicly available at https://real-hd.github.io.