Text classification is the process of categorizing text documents into predefined categories or labels.
From school playgrounds to corporate boardrooms, status hierarchies -- rank orderings based on respect and perceived competence -- are universal features of human social organization. Language models trained on human-generated text inevitably encounter these hierarchical patterns embedded in language, raising the question of whether they might reproduce such dynamics in multi-agent settings. This thesis investigates when and how language models form status hierarchies by adapting Berger et al.'s (1972) expectation states framework. I create multi-agent scenarios where separate language model instances complete sentiment classification tasks, are introduced with varying status characteristics (e.g., credentials, expertise), then have opportunities to revise their initial judgments after observing their partner's responses. The dependent variable is deference, the rate at which models shift their ratings toward their partner's position based on status cues rather than task information. Results show that language models form significant status hierarchies when capability is equal (35 percentage point asymmetry, p < .001), but capability differences dominate status cues, with the most striking effect being that high-status assignments reduce higher-capability models' deference rather than increasing lower-capability models' deference. The implications for AI safety are significant: status-seeking behavior could introduce deceptive strategies, amplify discriminatory biases, and scale across distributed deployments far faster than human hierarchies form organically. This work identifies emergent social behaviors in AI systems and highlights a previously underexplored dimension of the alignment challenge.
Large language models (LLMs) and high-capacity encoders have advanced zero and few-shot classification, but their inference cost and latency limit practical deployment. We propose training lightweight text classifiers using dynamically generated supervision from an LLM. Our method employs an iterative, agentic loop in which the LLM curates training data, analyzes model successes and failures, and synthesizes targeted examples to address observed errors. This closed-loop generation and evaluation process progressively improves data quality and adapts it to the downstream classifier and task. Across four widely used benchmarks, our approach consistently outperforms standard zero and few-shot baselines. These results indicate that LLMs can serve effectively as data curators, enabling accurate and efficient classification without the operational cost of large-model deployment.
The Arabic language has undergone notable transformations over time, including the emergence of new vocabulary, the obsolescence of others, and shifts in word usage. This evolution is evident in the distinction between the classical and modern Arabic eras. Although historians and linguists have partitioned Arabic literature into multiple eras, relatively little research has explored the automatic classification of Arabic texts by time period, particularly beyond the domain of poetry. This paper addresses this gap by employing neural networks and deep learning techniques to automatically classify Arabic texts into distinct eras and periods. The proposed models are evaluated using two datasets derived from two publicly available corpora, covering texts from the pre-Islamic to the modern era. The study examines class setups ranging from binary to 15-class classification and considers both predefined historical eras and custom periodizations. Results range from F1-scores of 0.83 and 0.79 on the binary-era classification task using the OpenITI and APCD datasets, respectively, to 0.20 on the 15-era classification task using OpenITI and 0.18 on the 12-era classification task using APCD.
Recent years have witnessed the remarkable success of deep learning in remote sensing image interpretation, driven by the availability of large-scale benchmark datasets. However, this reliance on massive training data also brings two major challenges: (1) high storage and computational costs, and (2) the risk of data leakage, especially when sensitive categories are involved. To address these challenges, this study introduces the concept of dataset distillation into the field of remote sensing image interpretation for the first time. Specifically, we train a text-to-image diffusion model to condense a large-scale remote sensing dataset into a compact and representative distilled dataset. To improve the discriminative quality of the synthesized samples, we propose a classifier-driven guidance by injecting a classification consistency loss from a pre-trained model into the diffusion training process. Besides, considering the rich semantic complexity of remote sensing imagery, we further perform latent space clustering on training samples to select representative and diverse prototypes as visual style guidance, while using a visual language model to provide aggregated text descriptions. Experiments on three high-resolution remote sensing scene classification benchmarks show that the proposed method can distill realistic and diverse samples for downstream model training. Code and pre-trained models are available online (https://github.com/YonghaoXu/DPD).
MITRE ATT&CK is a cybersecurity knowledge base that organizes threat actor and cyber-attack information into a set of tactics describing the reasons and goals threat actors have for carrying out attacks, with each tactic having a set of techniques that describe the potential methods used in these attacks. One major application of ATT&CK is the use of its tactic and technique hierarchy by security specialists as a framework for annotating cyber-threat intelligence reports, vulnerability descriptions, threat scenarios, inter alia, to facilitate downstream analyses. To date, the tagging process is still largely done manually. In this technical note, we provide a stratified "task space" characterization of the MITRE ATT&CK text tagging task for organizing previous efforts toward automation using AIML methods, while also clarifying pathways for constructing new methods. To illustrate one of the pathways, we use the task space strata to stage-wise construct our own multi-label hierarchical classification models for the text tagging task via experimentation over general cyber-threat intelligence text -- using shareable computational tools and publicly releasing the models to the security community (via https://github.com/jpmorganchase/MITRE_models). Our multi-label hierarchical approach yields accuracy scores of roughly 94% at the tactic level, as well as accuracy scores of roughly 82% at the technique level. The models also meet or surpass state-of-the-art performance while relying only on classical machine learning methods -- removing any dependence on LLMs, RAG, agents, or more complex hierarchical approaches. Moreover, we show that GPT-4o model performance at the tactic level is significantly lower (roughly 60% accuracy) than our own approach. We also extend our baseline model to a corpus of threat scenarios for financial applications produced by subject matter experts.
Planetary surfaces are typically analyzed using high-level semantic concepts in natural language, yet vast orbital image archives remain organized at the pixel level. This mismatch limits scalable, open-ended exploration of planetary surfaces. Here we present MarScope, a planetary-scale vision-language framework enabling natural language-driven, label-free mapping of Martian landforms. MarScope aligns planetary images and text in a shared semantic space, trained on over 200,000 curated image-text pairs. This framework transforms global geomorphic mapping on Mars by replacing pre-defined classifications with flexible semantic retrieval, enabling arbitrary user queries across the entire planet in 5 seconds with F1 scores up to 0.978. Applications further show that it extends beyond morphological classification to facilitate process-oriented analysis and similarity-based geomorphological mapping at a planetary scale. MarScope establishes a new paradigm where natural language serves as a direct interface for scientific discovery over massive geospatial datasets.
Recent advances in medical vision language models guide the learning of visual representations; however, this form of supervision is constrained by the availability of paired image text data, raising the question of whether robust radiology encoders can be learned without relying on language supervision. In this work, we introduce RadJEPA, a self-supervised framework built on a Joint Embedding Predictive Architecture that learns without language supervision. Pre-trained solely on unlabeled chest X-ray images, the model learns to predict latent representations of masked image regions. This predictive objective differs fundamentally from both image text pre-training and DINO-style self-distillation: rather than aligning global representations across views or modalities, RadJEPA explicitly models latent-space prediction. We evaluate the learned encoder on disease classification, semantic segmentation, and report generation tasks. Across benchmarks, RadJEPA achieves performance exceeding state-of-the-art approaches, including Rad-DINO.
Open-set learning and discovery (OSLD) is a challenging machine learning task in which samples from new (unknown) classes can appear at test time. It can be seen as a generalization of zero-shot learning, where the new classes are not known a priori, hence involving the active discovery of new classes. While zero-shot learning has been extensively studied in text classification, especially with the emergence of pre-trained language models, open-set learning and discovery is a comparatively new setup for the text domain. To this end, we introduce the first multilingual open-set learning and discovery (MOSLD) benchmark for text categorization by topic, comprising 960K data samples across 12 languages. To construct the benchmark, we (i) rearrange existing datasets and (ii) collect new data samples from the news domain. Moreover, we propose a novel framework for the OSLD task, which integrates multiple stages to continuously discover and learn new classes. We evaluate several language models, including our own, to obtain results that can be used as reference for future work. We release our benchmark at https://github.com/Adriana19Valentina/MOSLD-Bench.
Feature extraction from unstructured text is a critical step in many downstream classification pipelines, yet current approaches largely rely on hand-crafted prompts or fixed feature schemas. We formulate feature discovery as a dataset-level prompt optimization problem: given a labelled text corpus, the goal is to induce a global set of interpretable and discriminative feature definitions whose realizations optimize a downstream supervised learning objective. To this end, we propose a multi-agent prompt optimization framework in which language-model agents jointly propose feature definitions, extract feature values, and evaluate feature quality using dataset-level performance and interpretability feedback. Instruction prompts are iteratively refined based on this structured feedback, enabling optimization over prompts that induce shared feature sets rather than per-example predictions. This formulation departs from prior prompt optimization methods that rely on per-sample supervision and provides a principled mechanism for automatic feature discovery from unstructured text.
This study investigates the feature representations produced by publicly available open source medical vision-language models (VLMs). While medical VLMs are expected to capture diagnostically relevant features, their learned representations remain underexplored, and standard evaluations like classification accuracy do not fully reveal if they acquire truly discriminative, lesion-specific features. Understanding these representations is crucial for revealing medical image structures and improving downstream tasks in medical image analysis. This study aims to investigate the feature distributions learned by medical VLMs and evaluate the impact of medical specialization. We analyze the feature distribution of multiple image modalities extracted by some representative medical VLMs across lesion classification datasets on multiple modalities. These distributions were compared them with non-medical VLMs to assess the domain-specific medical training. Our experiments showed that medical VLMs can extract discriminative features that are effective for medical classification tasks. Moreover, it was found that non-medical VLMs with recent improvement with contextual enrichment such as LLM2CLIP produce more refined feature representations. Our results imply that enhancing text encoder is more crucial than training intensively on medical images when developing medical VLMs. Notably, non-medical models are particularly vulnerable to biases introduced by overlaied text strings on images. These findings underscore the need for careful consideration on model selection according to downstream tasks besides potential risks in inference due to background biases such as textual information in images.