Text classification is the process of categorizing text documents into predefined categories or labels.




Contrastive Language-Image Pretraining (CLIP) achieves strong generalization in vision-language tasks by aligning images and texts in a shared embedding space. However, recent findings show that CLIP-like models still underutilize fine-grained semantic signals in text, and this issue becomes even more pronounced when dealing with long and detailed captions. This stems from CLIP's training objective, which optimizes only global image-text similarity and overlooks token-level supervision - limiting its ability to achieve fine-grained visual-text alignment. To address this, we propose SuperCLIP, a simple yet effective framework that augments contrastive learning with classification-based supervision. By adding only a lightweight linear layer to the vision encoder, SuperCLIP leverages token-level cues to enhance visual-textual alignment - with just a 0.077% increase in total FLOPs, and no need for additional annotated data. Experiments show that SuperCLIP consistently improves zero-shot classification, image-text retrieval, and purely visual tasks. These gains hold regardless of whether the model is trained on original web data or rich re-captioned data, demonstrating SuperCLIP's ability to recover textual supervision in both cases. Furthermore, SuperCLIP alleviates CLIP's small-batch performance drop through classification-based supervision that avoids reliance on large batch sizes. Code and models will be made open source.
In this study, we propose a structured methodology that utilizes large language models (LLMs) in a cost-efficient and parsimonious manner, integrating the strengths of scholars and machines while offsetting their respective weaknesses. Our methodology, facilitated through a chain of thought and few-shot learning prompting from computer science, extends best practices for co-author teams in qualitative research to human-machine teams in quantitative research. This allows humans to utilize abductive reasoning and natural language to interrogate not just what the machine has done but also what the human has done. Our method highlights how scholars can manage inherent weaknesses OF LLMs using careful, low-cost techniques. We demonstrate how to use the methodology to interrogate human-machine rating discrepancies for a sample of 1,934 press releases announcing pharmaceutical alliances (1990-2017).




In legal matters, text classification models are most often used to filter through large datasets in search of documents that meet certain pre-selected criteria like relevance to a certain subject matter, such as legally privileged communications and attorney-directed documents. In this context, large language models have demonstrated strong performance. This paper presents an empirical study investigating the role of randomness in LLM-based classification for attorney-client privileged document detection, focusing on four key dimensions: (1) the effectiveness of LLMs in identifying legally privileged documents, (2) the influence of randomness control parameters on classification outputs, (3) their impact on overall classification performance, and (4) a methodology for leveraging randomness to enhance accuracy. Experimental results showed that LLMs can identify privileged documents effectively, randomness control parameters have minimal impact on classification performance, and importantly, our developed methodology for leveraging randomness can have a significant impact on improving accuracy. Notably, this methodology that leverages randomness could also enhance a corporation's confidence in an LLM's output when incorporated into its sanctions-compliance processes. As organizations increasingly rely on LLMs to augment compliance workflows, reducing output variability helps build internal and regulatory confidence in LLM-derived sanctions-screening decisions.
Traditional Convolutional Neural Networks have been successful in capturing local, position-invariant features in text, but their capacity to model complex transformation within language can be further explored. In this work, we explore a novel approach by integrating Lie Convolutions into Convolutional-based sentence classifiers, inspired by the ability of Lie group operations to capture complex, non-Euclidean symmetries. Our proposed models SCLie and DPCLie empirically outperform traditional Convolutional-based sentence classifiers, suggesting that Lie-based models relatively improve the accuracy by capturing transformations not commonly associated with language. Our findings motivate more exploration of new paradigms in language modeling.
The human hand is our primary interface to the physical world, yet egocentric perception rarely knows when, where, or how forcefully it makes contact. Robust wearable tactile sensors are scarce, and no existing in-the-wild datasets align first-person video with full-hand touch. To bridge the gap between visual perception and physical interaction, we present OpenTouch, the first in-the-wild egocentric full-hand tactile dataset, containing 5.1 hours of synchronized video-touch-pose data and 2,900 curated clips with detailed text annotations. Using OpenTouch, we introduce retrieval and classification benchmarks that probe how touch grounds perception and action. We show that tactile signals provide a compact yet powerful cue for grasp understanding, strengthen cross-modal alignment, and can be reliably retrieved from in-the-wild video queries. By releasing this annotated vision-touch-pose dataset and benchmark, we aim to advance multimodal egocentric perception, embodied learning, and contact-rich robotic manipulation.




Extracting structured information from zeolite synthesis experimental procedures is critical for materials discovery, yet existing methods have not systematically evaluated Large Language Models (LLMs) for this domain-specific task. This work addresses a fundamental question: what is the efficacy of different prompting strategies when applying LLMs to scientific information extraction? We focus on four key subtasks: event type classification (identifying synthesis steps), trigger text identification (locating event mentions), argument role extraction (recognizing parameter types), and argument text extraction (extracting parameter values). We evaluate four prompting strategies - zero-shot, few-shot, event-specific, and reflection-based - across six state-of-the-art LLMs (Gemma-3-12b-it, GPT-5-mini, O4-mini, Claude-Haiku-3.5, DeepSeek reasoning and non-reasoning) using the ZSEE dataset of 1,530 annotated sentences. Results demonstrate strong performance on event type classification (80-90\% F1) but modest performance on fine-grained extraction tasks, particularly argument role and argument text extraction (50-65\% F1). GPT-5-mini exhibits extreme prompt sensitivity with 11-79\% F1 variation. Notably, advanced prompting strategies provide minimal improvements over zero-shot approaches, revealing fundamental architectural limitations. Error analysis identifies systematic hallucination, over-generalization, and inability to capture synthesis-specific nuances. Our findings demonstrate that while LLMs achieve high-level understanding, precise extraction of experimental parameters requires domain-adapted models, providing quantitative benchmarks for scientific information extraction.
Frontier language model quality increasingly hinges on our ability to organize web-scale text corpora for training. Today's dominant tools trade off speed and flexibility: lexical classifiers (e.g., FastText) are fast but limited to producing classification output scores, while the vector-valued outputs of transformer text embedding models flexibly support numerous workflows (e.g., clustering, classification, and retrieval) but are computationally expensive to produce. We introduce Luxical, a library for high-speed "lexical-dense" text embeddings that aims to recover the best properties of both approaches for web-scale text organization. Luxical combines sparse TF--IDF features, a small ReLU network, and a knowledge distillation training regimen to approximate large transformer embedding models at a fraction of their operational cost. In this technical report, we describe the Luxical architecture and training objective and evaluate a concrete Luxical model in two disparate applications: a targeted webcrawl document retrieval test and an end-to-end language model data curation task grounded in text classification. In these tasks we demonstrate speedups ranging from 3x to 100x over varying-sized neural baselines, and comparable to FastText model inference during the data curation task. On these evaluations, the tested Luxical model illustrates favorable compute/quality trade-offs for large-scale text organization, matching the quality of neural baselines. Luxical is available as open-source software at https://github.com/datologyai/luxical.




Teachers' emotional states are critical in educational scenarios, profoundly impacting teaching efficacy, student engagement, and learning achievements. However, existing studies often fail to accurately capture teachers' emotions due to the performative nature and overlook the critical impact of instructional information on emotional expression.In this paper, we systematically investigate teacher sentiment analysis by building both the dataset and the model accordingly. We construct the first large-scale teacher multimodal sentiment analysis dataset, T-MED.To ensure labeling accuracy and efficiency, we employ a human-machine collaborative labeling process.The T-MED dataset includes 14,938 instances of teacher emotional data from 250 real classrooms across 11 subjects ranging from K-12 to higher education, integrating multimodal text, audio, video, and instructional information.Furthermore, we propose a novel asymmetric attention-based multimodal teacher sentiment analysis model, AAM-TSA.AAM-TSA introduces an asymmetric attention mechanism and hierarchical gating unit to enable differentiated cross-modal feature fusion and precise emotional classification. Experimental results demonstrate that AAM-TSA significantly outperforms existing state-of-the-art methods in terms of accuracy and interpretability on the T-MED dataset.




Vision-Language Models (VLMs) have shown strong performance in zero-shot image classification tasks. However, existing methods, including Contrastive Language-Image Pre-training (CLIP), all rely on annotated text-to-image pairs for aligning visual and textual modalities. This dependency introduces substantial cost and accuracy requirement in preparing high-quality datasets. At the same time, processing data from two modes also requires dual-tower encoders for most models, which also hinders their lightweight. To address these limitations, we introduce a ``Contrastive Language-Image Pre-training via Large-Language-Model-based Generation (LGCLIP)" framework. LGCLIP leverages a Large Language Model (LLM) to generate class-specific prompts that guide a diffusion model in synthesizing reference images. Afterwards these generated images serve as visual prototypes, and the visual features of real images are extracted and compared with the visual features of these prototypes to achieve comparative prediction. By optimizing prompt generation through the LLM and employing only a visual encoder, LGCLIP remains lightweight and efficient. Crucially, our framework requires only class labels as input during whole experimental procedure, eliminating the need for manually annotated image-text pairs and extra pre-processing. Experimental results validate the feasibility and efficiency of LGCLIP, demonstrating great performance in zero-shot classification tasks and establishing a novel paradigm for classification.




This document reports the sequence of practices and methodologies implemented during the Big Data course. It details the workflow beginning with the processing of the Epsilon dataset through group and individual strategies, followed by text analysis and classification with RestMex and movie feature analysis with IMDb. Finally, it describes the technical implementation of a distributed computing cluster with Apache Spark on Linux using Scala.