Abstract:Transductive zero-shot learning (ZSL) aims to classify unseen categories by leveraging both semantic class descriptions and the distribution of unlabeled test data. While Vision-Language Models (VLMs) such as CLIP excel at aligning visual inputs with textual semantics, they often rely too heavily on class-level priors and fail to capture fine-grained visual cues. In contrast, Vision-only Foundation Models (VFMs) like DINOv2 provide rich perceptual features but lack semantic alignment. To exploit the complementary strengths of these models, we propose OTFusion, a simple yet effective training-free framework that bridges VLMs and VFMs via Optimal Transport. Specifically, OTFusion aims to learn a shared probabilistic representation that aligns visual and semantic information by minimizing the transport cost between their respective distributions. This unified distribution enables coherent class predictions that are both semantically meaningful and visually grounded. Extensive experiments on 11 benchmark datasets demonstrate that OTFusion consistently outperforms the original CLIP model, achieving an average accuracy improvement of nearly $10\%$, all without any fine-tuning or additional annotations. The code will be publicly released after the paper is accepted.
Abstract:Recently, physiological signal-based biometric systems have received wide attention. Unlike traditional biometric features, physiological signals can not be easily compromised (usually unobservable to human eyes). Photoplethysmography (PPG) signal is easy to measure, making it more attractive than many other physiological signals for biometric authentication. However, with the advent of remote PPG (rPPG), unobservability has been challenged when the attacker can remotely steal the rPPG signals by monitoring the victim's face, subsequently posing a threat to PPG-based biometrics. In PPG-based biometric authentication, current attack approaches mandate the victim's PPG signal, making rPPG-based attacks neglected. In this paper, we firstly analyze the security of PPG-based biometrics, including user authentication and communication protocols. We evaluate the signal waveforms, heart rate and inter-pulse-interval information extracted by five rPPG methods, including four traditional optical computing methods (CHROM, POS, LGI, PCA) and one deep learning method (CL_rPPG). We conducted experiments on five datasets (PURE, UBFC_rPPG, UBFC_Phys, LGI_PPGI, and COHFACE) to collect a comprehensive set of results. Our empirical studies show that rPPG poses a serious threat to the authentication system. The success rate of the rPPG signal spoofing attack in the user authentication system reached 0.35. The bit hit rate is 0.6 in inter-pulse-interval-based security protocols. Further, we propose an active defence strategy to hide the physiological signals of the face to resist the attack. It reduces the success rate of rPPG spoofing attacks in user authentication to 0.05. The bit hit rate was reduced to 0.5, which is at the level of a random guess. Our strategy effectively prevents the exposure of PPG signals to protect users' sensitive physiological data.