Traditionally, creating photo-realistic 3D head avatars requires a studio-level multi-view capture setup and expensive optimization during test-time, limiting the use of digital human doubles to the VFX industry or offline renderings. To address this shortcoming, we present Avat3r, which regresses a high-quality and animatable 3D head avatar from just a few input images, vastly reducing compute requirements during inference. More specifically, we make Large Reconstruction Models animatable and learn a powerful prior over 3D human heads from a large multi-view video dataset. For better 3D head reconstructions, we employ position maps from DUSt3R and generalized feature maps from the human foundation model Sapiens. To animate the 3D head, our key discovery is that simple cross-attention to an expression code is already sufficient. Finally, we increase robustness by feeding input images with different expressions to our model during training, enabling the reconstruction of 3D head avatars from inconsistent inputs, e.g., an imperfect phone capture with accidental movement, or frames from a monocular video. We compare Avat3r with current state-of-the-art methods for few-input and single-input scenarios, and find that our method has a competitive advantage in both tasks. Finally, we demonstrate the wide applicability of our proposed model, creating 3D head avatars from images of different sources, smartphone captures, single images, and even out-of-domain inputs like antique busts. Project website: https://tobias-kirschstein.github.io/avat3r/
In this paper, we aim to build an adversarially robust zero-shot image classifier. We ground our work on CLIP, a vision-language pre-trained encoder model that can perform zero-shot classification by matching an image with text prompts ``a photo of a <class-name>.''. Purification is the path we choose since it does not require adversarial training on specific attack types and thus can cope with any foreseen attacks. We then formulate purification risk as the KL divergence between the joint distributions of the purification process of denoising the adversarial samples and the attack process of adding perturbations to benign samples, through bidirectional Stochastic Differential Equations (SDEs). The final derived results inspire us to explore purification in the multi-modal latent space of CLIP. We propose two variants for our CLIPure approach: CLIPure-Diff which models the likelihood of images' latent vectors with the DiffusionPrior module in DaLLE-2 (modeling the generation process of CLIP's latent vectors), and CLIPure-Cos which models the likelihood with the cosine similarity between the embeddings of an image and ``a photo of a.''. As far as we know, CLIPure is the first purification method in multi-modal latent space and CLIPure-Cos is the first purification method that is not based on generative models, which substantially improves defense efficiency. We conducted extensive experiments on CIFAR-10, ImageNet, and 13 datasets that previous CLIP-based defense methods used for evaluating zero-shot classification robustness. Results show that CLIPure boosts the SOTA robustness by a large margin, e.g., from 71.7% to 91.1% on CIFAR10, from 59.6% to 72.6% on ImageNet, and 108% relative improvements of average robustness on the 13 datasets over previous SOTA. The code is available at https://github.com/TMLResearchGroup-CAS/CLIPure.
In precision agriculture, the scarcity of labeled data and significant covariate shifts pose unique challenges for training machine learning models. This scarcity is particularly problematic due to the dynamic nature of the environment and the evolving appearance of agricultural subjects as living things. We propose a novel system for generating realistic synthetic data to address these challenges. Utilizing a vineyard simulator based on the Unity engine, our system employs a cut-and-paste technique with geometrical consistency considerations to produce accurate photo-realistic images and labels from synthetic environments to train detection algorithms. This approach generates diverse data samples across various viewpoints and lighting conditions. We demonstrate considerable performance improvements in training a state-of-the-art detector by applying our method to table grapes cultivation. The combination of techniques can be easily automated, an increasingly important consideration for adoption in agricultural practice.
Search and rescue (SAR) missions require reliable search methods to locate survivors, especially in challenging or inaccessible environments. This is why introducing unmanned aerial vehicles (UAVs) can be of great help to enhance the efficiency of SAR missions while simultaneously increasing the safety of everyone involved in the mission. Motivated by this, we design and experiment with autonomous UAV search for humans in a Mediterranean karst environment. The UAVs are directed using Heat equation-driven area coverage (HEDAC) ergodic control method according to known probability density and detection function. The implemented sensing framework consists of a probabilistic search model, motion control system, and computer vision object detection. It enables calculation of the probability of the target being detected in the SAR mission, and this paper focuses on experimental validation of proposed probabilistic framework and UAV control. The uniform probability density to ensure the even probability of finding the targets in the desired search area is achieved by assigning suitably thought-out tasks to 78 volunteers. The detection model is based on YOLO and trained with a previously collected ortho-photo image database. The experimental search is carefully planned and conducted, while as many parameters as possible are recorded. The thorough analysis consists of the motion control system, object detection, and the search validation. The assessment of the detection and search performance provides strong indication that the designed detection model in the UAV control algorithm is aligned with real-world results.
This study aims to enhance the accuracy of a six-axis force/torque sensor compared to existing approaches that utilize Multi-Layer Perceptron (MLP) and the Least Square Method. The sensor used in this study is based on a photo-coupler and operates with infrared light, making it susceptible to dark current effects, which cause drift due to temperature variations. Additionally, the sensor is compact and lightweight (45g), resulting in a low thermal capacity. Consequently, even small amounts of heat can induce rapid temperature changes, affecting the sensor's performance in real time. To address these challenges, this study compares the conventional MLP approach with the proposed Gated Recurrent Unit (GRU)-based method. Experimental results demonstrate that the GRU approach, leveraging sequential data, achieves superior performance.
We introduce PhotoDoodle, a novel image editing framework designed to facilitate photo doodling by enabling artists to overlay decorative elements onto photographs. Photo doodling is challenging because the inserted elements must appear seamlessly integrated with the background, requiring realistic blending, perspective alignment, and contextual coherence. Additionally, the background must be preserved without distortion, and the artist's unique style must be captured efficiently from limited training data. These requirements are not addressed by previous methods that primarily focus on global style transfer or regional inpainting. The proposed method, PhotoDoodle, employs a two-stage training strategy. Initially, we train a general-purpose image editing model, OmniEditor, using large-scale data. Subsequently, we fine-tune this model with EditLoRA using a small, artist-curated dataset of before-and-after image pairs to capture distinct editing styles and techniques. To enhance consistency in the generated results, we introduce a positional encoding reuse mechanism. Additionally, we release a PhotoDoodle dataset featuring six high-quality styles. Extensive experiments demonstrate the advanced performance and robustness of our method in customized image editing, opening new possibilities for artistic creation.
Constructing photorealistic virtual worlds has applications across various fields, but it often requires the extensive labor of highly trained professionals to operate conventional 3D modeling software. To democratize this process, we introduce WorldCraft, a system where large language model (LLM) agents leverage procedural generation to create indoor and outdoor scenes populated with objects, allowing users to control individual object attributes and the scene layout using intuitive natural language commands. In our framework, a coordinator agent manages the overall process and works with two specialized LLM agents to complete the scene creation: ForgeIt, which integrates an ever-growing manual through auto-verification to enable precise customization of individual objects, and ArrangeIt, which formulates hierarchical optimization problems to achieve a layout that balances ergonomic and aesthetic considerations. Additionally, our pipeline incorporates a trajectory control agent, allowing users to animate the scene and operate the camera through natural language interactions. Our system is also compatible with off-the-shelf deep 3D generators to enrich scene assets. Through evaluations and comparisons with state-of-the-art methods, we demonstrate the versatility of WorldCraft, ranging from single-object customization to intricate, large-scale interior and exterior scene designs. This system empowers non-professionals to bring their creative visions to life.
To evaluate end-to-end autonomous driving systems, a simulation environment based on Novel View Synthesis (NVS) techniques is essential, which synthesizes photo-realistic images and point clouds from previously recorded sequences under new vehicle poses, particularly in cross-lane scenarios. Therefore, the development of a multi-lane dataset and benchmark is necessary. While recent synthetic scene-based NVS datasets have been prepared for cross-lane benchmarking, they still lack the realism of captured images and point clouds. To further assess the performance of existing methods based on NeRF and 3DGS, we present the first multi-lane dataset registering parallel scans specifically for novel driving view synthesis dataset derived from real-world scans, comprising 25 groups of associated sequences, including 16,000 front-view images, 64,000 surround-view images, and 16,000 LiDAR frames. All frames are labeled to differentiate moving objects from static elements. Using this dataset, we evaluate the performance of existing approaches in various testing scenarios at different lanes and distances. Additionally, our method provides the solution for solving and assessing the quality of multi-sensor poses for multi-modal data alignment for curating such a dataset in real-world. We plan to continually add new sequences to test the generalization of existing methods across different scenarios. The dataset is released publicly at the project page: https://nizqleo.github.io/paralane-dataset/.
In this paper we use convolutional neural networks (CNNs) for weed detection in agricultural land. We specifically investigate the application of two CNN layer types, Conv2d and dilated Conv2d, for weed detection in crop fields. The suggested method extracts features from the input photos using pre-trained models, which are subsequently adjusted for weed detection. The findings of the experiment, which used a sizable collection of dataset consisting of 15336 segments, being 3249 of soil, 7376 of soybean, 3520 grass and 1191 of broadleaf weeds. show that the suggested approach can accurately and successfully detect weeds at an accuracy of 94%. This study has significant ramifications for lowering the usage of toxic herbicides and increasing the effectiveness of weed management in agriculture.
We introduce AV-Flow, an audio-visual generative model that animates photo-realistic 4D talking avatars given only text input. In contrast to prior work that assumes an existing speech signal, we synthesize speech and vision jointly. We demonstrate human-like speech synthesis, synchronized lip motion, lively facial expressions and head pose; all generated from just text characters. The core premise of our approach lies in the architecture of our two parallel diffusion transformers. Intermediate highway connections ensure communication between the audio and visual modalities, and thus, synchronized speech intonation and facial dynamics (e.g., eyebrow motion). Our model is trained with flow matching, leading to expressive results and fast inference. In case of dyadic conversations, AV-Flow produces an always-on avatar, that actively listens and reacts to the audio-visual input of a user. Through extensive experiments, we show that our method outperforms prior work, synthesizing natural-looking 4D talking avatars. Project page: https://aggelinacha.github.io/AV-Flow/