Information extraction is the process of automatically extracting structured information from unstructured text data.
Large language models (LLMs) are increasingly touted as powerful tools for automating scientific information extraction. However, existing methods and tools often struggle with the realities of scientific literature: long-context documents, multi-modal content, and reconciling varied and inconsistent fine-grained information across multiple publications into standardized formats. These challenges are further compounded when the desired data schema or extraction ontology changes rapidly, making it difficult to re-architect or fine-tune existing systems. We present SciEx, a modular and composable framework that decouples key components including PDF parsing, multi-modal retrieval, extraction, and aggregation. This design streamlines on-demand data extraction while enabling extensibility and flexible integration of new models, prompting strategies, and reasoning mechanisms. We evaluate SciEx on datasets spanning three scientific topics for its ability to extract fine-grained information accurately and consistently. Our findings provide practical insights into both the strengths and limitations of current LLM-based pipelines.
Indoor navigation remains a critical challenge for people with visual impairments. The current solutions mainly rely on infrastructure-based systems, which limit their ability to navigate safely in dynamic environments. We propose a novel navigation approach that utilizes a foundation model to transform floor plans into navigable knowledge graphs and generate human-readable navigation instructions. Floorplan2Guide integrates a large language model (LLM) to extract spatial information from architectural layouts, reducing the manual preprocessing required by earlier floorplan parsing methods. Experimental results indicate that few-shot learning improves navigation accuracy in comparison to zero-shot learning on simulated and real-world evaluations. Claude 3.7 Sonnet achieves the highest accuracy among the evaluated models, with 92.31%, 76.92%, and 61.54% on the short, medium, and long routes, respectively, under 5-shot prompting of the MP-1 floor plan. The success rate of graph-based spatial structure is 15.4% higher than that of direct visual reasoning among all models, which confirms that graphical representation and in-context learning enhance navigation performance and make our solution more precise for indoor navigation of Blind and Low Vision (BLV) users.
Accurate channel state information (CSI) acquisition is essential for modern wireless systems, which becomes increasingly difficult under large antenna arrays, strict pilot overhead constraints, and diverse deployment environments. Existing artificial intelligence-based solutions often lack robustness and fail to generalize across scenarios. To address this limitation, this paper introduces a predictive-foundation-model-based channel estimation framework that enables accurate, low-overhead, and generalizable CSI acquisition. The proposed framework employs a predictive foundation model trained on large-scale cross-domain CSI data to extract universal channel representations and provide predictive priors with strong cross-scenario transferability. A pilot processing network based on a vision transformer architecture is further designed to capture spatial, temporal, and frequency correlations from pilot observations. An efficient fusion mechanism integrates predictive priors with real-time measurements, enabling reliable CSI reconstruction even under sparse or noisy conditions. Extensive evaluations across diverse configurations demonstrate that the proposed estimator significantly outperforms both classical and data-driven baselines in accuracy, robustness, and generalization capability.
Self-supervised monocular depth estimation has achieved notable success under daytime conditions. However, its performance deteriorates markedly at night due to low visibility and varying illumination, e.g., insufficient light causes textureless areas, and moving objects bring blurry regions. To this end, we propose a self-supervised framework named DASP that leverages spatiotemporal priors for nighttime depth estimation. Specifically, DASP consists of an adversarial branch for extracting spatiotemporal priors and a self-supervised branch for learning. In the adversarial branch, we first design an adversarial network where the discriminator is composed of four devised spatiotemporal priors learning blocks (SPLB) to exploit the daytime priors. In particular, the SPLB contains a spatial-based temporal learning module (STLM) that uses orthogonal differencing to extract motion-related variations along the time axis and an axial spatial learning module (ASLM) that adopts local asymmetric convolutions with global axial attention to capture the multiscale structural information. By combining STLM and ASLM, our model can acquire sufficient spatiotemporal features to restore textureless areas and estimate the blurry regions caused by dynamic objects. In the self-supervised branch, we propose a 3D consistency projection loss to bilaterally project the target frame and source frame into a shared 3D space, and calculate the 3D discrepancy between the two projected frames as a loss to optimize the 3D structural consistency and daytime priors. Extensive experiments on the Oxford RobotCar and nuScenes datasets demonstrate that our approach achieves state-of-the-art performance for nighttime depth estimation. Ablation studies further validate the effectiveness of each component.
The ability to extract value from historical data is essential for enterprise decision-making. However, much of this information remains inaccessible within large legacy file systems that lack structured organization and semantic indexing, making retrieval and analysis inefficient and error-prone. We introduce SPAR (Session-based Pipeline for Adaptive Retrieval), a conceptual framework that integrates Large Language Models (LLMs) into a Retrieval-Augmented Generation (RAG) architecture specifically designed for legacy enterprise environments. Unlike conventional RAG pipelines, which require costly construction and maintenance of full-scale vector databases that mirror the entire file system, SPAR employs a lightweight two-stage process: a semantic Metadata Index is first created, after which session-specific vector databases are dynamically generated on demand. This design reduces computational overhead while improving transparency, controllability, and relevance in retrieval. We provide a theoretical complexity analysis comparing SPAR with standard LLM-based RAG pipelines, demonstrating its computational advantages. To validate the framework, we apply SPAR to a synthesized enterprise-scale file system containing a large corpus of biomedical literature, showing improvements in both retrieval effectiveness and downstream model accuracy. Finally, we discuss design trade-offs and outline open challenges for deploying SPAR across diverse enterprise settings.
Face recognition systems store face templates for efficient matching. Once leaked, these templates pose a threat: inverting them can yield photorealistic surrogates that compromise privacy and enable impersonation. Although existing research has achieved relatively realistic face template inversion, the reconstructed facial images exhibit over-smoothed facial-part attributes (eyes, nose, mouth) and limited transferability. To address this problem, we present CLIP-FTI, a CLIP-driven fine-grained attribute conditioning framework for face template inversion. Our core idea is to use the CLIP model to obtain the semantic embeddings of facial features, in order to realize the reconstruction of specific facial feature attributes. Specifically, facial feature attribute embeddings extracted from CLIP are fused with the leaked template via a cross-modal feature interaction network and projected into the intermediate latent space of a pretrained StyleGAN. The StyleGAN generator then synthesizes face images with the same identity as the templates but with more fine-grained facial feature attributes. Experiments across multiple face recognition backbones and datasets show that our reconstructions (i) achieve higher identification accuracy and attribute similarity, (ii) recover sharper component-level attribute semantics, and (iii) improve cross-model attack transferability compared to prior reconstruction attacks. To the best of our knowledge, ours is the first method to use additional information besides the face template attack to realize face template inversion and obtains SOTA results.
We present a method for jointly recovering the appearance and internal structure of botanical plants from multi-view images based on 3D Gaussian Splatting (3DGS). While 3DGS exhibits robust reconstruction of scene appearance for novel-view synthesis, it lacks structural representations underlying those appearances (e.g., branching patterns of plants), which limits its applicability to tasks such as plant phenotyping. To achieve both high-fidelity appearance and structural reconstruction, we introduce GaussianPlant, a hierarchical 3DGS representation, which disentangles structure and appearance. Specifically, we employ structure primitives (StPs) to explicitly represent branch and leaf geometry, and appearance primitives (ApPs) to the plants' appearance using 3D Gaussians. StPs represent a simplified structure of the plant, i.e., modeling branches as cylinders and leaves as disks. To accurately distinguish the branches and leaves, StP's attributes (i.e., branches or leaves) are optimized in a self-organized manner. ApPs are bound to each StP to represent the appearance of branches or leaves as in conventional 3DGS. StPs and ApPs are jointly optimized using a re-rendering loss on the input multi-view images, as well as the gradient flow from ApP to StP using the binding correspondence information. We conduct experiments to qualitatively evaluate the reconstruction accuracy of both appearance and structure, as well as real-world experiments to qualitatively validate the practical performance. Experiments show that the GaussianPlant achieves both high-fidelity appearance reconstruction via ApPs and accurate structural reconstruction via StPs, enabling the extraction of branch structure and leaf instances.
Millimeter-wave (mmWave) radar has emerged as a compact and powerful sensing modality for advanced perception tasks that leverage machine learning techniques. It is particularly effective in scenarios where vision-based sensors fail to capture reliable information, such as detecting occluded objects or distinguishing between different surface materials in indoor environments. Due to the non-linear characteristics of mmWave radar signals, deep learning-based methods are well suited for extracting relevant information from in-phase and quadrature (IQ) data. However, the current state of the art in IQ signal-based occluded-object and material classification still offers substantial potential for further improvement. In this paper, we propose a bidirectional cross-attention fusion network that combines IQ-signal and FFT-transformed radar features obtained by distinct complex-valued convolutional neural networks (CNNs). The proposed method achieves improved performance and robustness compared to standalone complex-valued CNNs. We achieve a near-perfect material classification accuracy of 99.92% on samples collected at same sensor-to-surface distances used during training, and an improved accuracy of 67.38% on samples measured at previously unseen distances, demonstrating improved generalization ability across varying measurement conditions. Furthermore, the accuracy for occluded object classification improves from 91.99% using standalone complex-valued CNNs to 94.20% using our proposed approach.
Target classification is a fundamental task in radar systems, and its performance critically depends on the quantization precision of the signal. While high-precision quantization (e.g. 16-bit) is well established, 1-bit quantization offers distinct advantages by enabling direct sampling at high frequencies and eliminating complex intermediate stages. However, its extreme quantization leads to significant information loss. Although higher sampling rates can compensate for this loss, such oversampling is impractical at the high frequencies targeted for direct sampling. To achieve high-accuracy classification directly from 1-bit radar data under the same sampling rate, this paper proposes a novel two-stage deep learning framework, CF-Net. First, we introduce a self-supervised pre-training strategy based on a dual-branch U-Net architecture. This network learns to restore high-fidelity 16-bit images from their 1-bit counterparts via a cross-feature reconstruction task, forcing the 1-bit encoder to learn robust features despite extreme quantization. Subsequently, this pre-trained encoder is repurposed and fine-tuned for the downstream multi-class target classification task. Experiments on two radar target datasets demonstrate that CF-Net can effectively extract discriminative features from 1-bit imagery, achieving comparable and even superior accuracy to some 16-bit methods without oversampling.
Cryogenic electron microscopy (Cryo-EM) has become an essential tool for capturing high-resolution biological structures. Despite its advantage in visualizations, the large storage size of Cryo-EM data file poses significant challenges for researchers and educators. This paper investigates the application of deep learning, specifically implicit neural representation (INR), to compress Cryo-EM biological data. The proposed approach first extracts the binary map of each file according to the density threshold. The density map is highly repetitive, ehich can be effectively compressed by GZIP. The neural network then trains to encode spatial density information, allowing the storage of network parameters and learnable latent vectors. To improve reconstruction accuracy, I further incorporate the positional encoding to enhance spatial representation and a weighted Mean Squared Error (MSE) loss function to balance density distribution variations. Using this approach, my aim is to provide a practical and efficient biological data compression solution that can be used for educational and research purpose, while maintaining a reasonable compression ratio and reconstruction quality from file to file.