Shammie
Abstract:Rapid advancements in large language models (LLMs) have sparked the question whether these models possess some form of consciousness. To tackle this challenge, Butlin et al. (2023) introduced a list of indicators for consciousness in artificial systems based on neuroscientific theories. In this work, we evaluate a key indicator from this list, called HOT-3, which tests for agency guided by a general belief-formation and action selection system that updates beliefs based on meta-cognitive monitoring. We view beliefs as representations in the model's latent space that emerge in response to a given input, and introduce a metric to quantify their dominance during generation. Analyzing the dynamics between competing beliefs across models and tasks reveals three key findings: (1) external manipulations systematically modulate internal belief formation, (2) belief formation causally drives the model's action selection, and (3) models can monitor and report their own belief states. Together, these results provide empirical support for the existence of belief-guided agency and meta-cognitive monitoring in LLMs. More broadly, our work lays methodological groundwork for investigating the emergence of agency, beliefs, and meta-cognition in LLMs.
Abstract:Activation decomposition methods in language models are tightly coupled to geometric assumptions on how concepts are realized in activation space. Existing approaches search for individual global directions, implicitly assuming linear separability, which overlooks concepts with nonlinear or multi-dimensional structure. In this work, we leverage Mixture of Factor Analyzers (MFA) as a scalable, unsupervised alternative that models the activation space as a collection of Gaussian regions with their local covariance structure. MFA decomposes activations into two compositional geometric objects: the region's centroid in activation space, and the local variation from the centroid. We train large-scale MFAs for Llama-3.1-8B and Gemma-2-2B, and show they capture complex, nonlinear structures in activation space. Moreover, evaluations on localization and steering benchmarks show that MFA outperforms unsupervised baselines, is competitive with supervised localization methods, and often achieves stronger steering performance than sparse autoencoders. Together, our findings position local geometry, expressed through subspaces, as a promising unit of analysis for scalable concept discovery and model control, accounting for complex structures that isolated directions fail to capture.
Abstract:Growing efforts to improve knowledge distillation (KD) in large language models (LLMs) replace dense teacher supervision with selective distillation, which uses a subset of token positions, vocabulary classes, or training samples for supervision. However, it remains unclear which importance signals, selection policies, and their interplay are most effective. In this work, we revisit where and how to distill in autoregressive LLMs. We disentangle selective KD along the position, class, and sample axes and systematically compare importance signals and selection policies. Then, guided by this analysis, we identify underexplored opportunities and introduce student-entropy-guided position selection (SE-KD). Across a suite of benchmarks, SE-KD often improves accuracy, downstream task adherence, and memory efficiency over dense distillation. Extending this approach across the class and sample axes (SE-KD 3X) yields complementary efficiency gains that make offline teacher caching feasible. In practice, this reduces wall time by 70% and peak memory by 18%, while cutting storage usage by 80% over prior methods without sacrificing performance.
Abstract:Large language models (LLMs) often respond confidently to questions even when they lack the necessary information, leading to hallucinated answers. In this work, we study the problem of (un)answerability detection, focusing on extractive question answering (QA) where the model should determine if a passage contains sufficient information to answer a given question. We propose a simple approach for identifying a direction in the model's activation space that captures unanswerability and uses it for classification. This direction is selected by applying activation additions during inference and measuring their impact on the model's abstention behavior. We show that projecting hidden activations onto this direction yields a reliable score for (un)answerability classification. Experiments on two open-weight LLMs and four extractive QA benchmarks show that our method effectively detects unanswerable questions and generalizes better across datasets than existing prompt-based and classifier-based approaches. Moreover, the obtained directions extend beyond extractive QA to unanswerability that stems from factors, such as lack of scientific consensus and subjectivity. Last, causal interventions show that adding or ablating the directions effectively controls the abstention behavior of the model.
Abstract:Language models (LMs) increasingly drive real-world applications that require world knowledge. However, the internal processes through which models turn data into representations of knowledge and beliefs about the world, are poorly understood. Insights into these processes could pave the way for developing LMs with knowledge representations that are more consistent, robust, and complete. To facilitate studying these questions, we present LMEnt, a suite for analyzing knowledge acquisition in LMs during pretraining. LMEnt introduces: (1) a knowledge-rich pretraining corpus, fully annotated with entity mentions, based on Wikipedia, (2) an entity-based retrieval method over pretraining data that outperforms previous approaches by as much as 80.4%, and (3) 12 pretrained models with up to 1B parameters and 4K intermediate checkpoints, with comparable performance to popular open-sourced models on knowledge benchmarks. Together, these resources provide a controlled environment for analyzing connections between entity mentions in pretraining and downstream performance, and the effects of causal interventions in pretraining data. We show the utility of LMEnt by studying knowledge acquisition across checkpoints, finding that fact frequency is key, but does not fully explain learning trends. We release LMEnt to support studies of knowledge in LMs, including knowledge representations, plasticity, editing, attribution, and learning dynamics.
Abstract:Recent reasoning models show the ability to reflect, backtrack, and self-validate their reasoning, which is crucial in spotting mistakes and arriving at accurate solutions. A natural question that arises is how effectively models can perform such self-reevaluation. We tackle this question by investigating how well reasoning models identify and recover from four types of unhelpful thoughts: uninformative rambling thoughts, thoughts irrelevant to the question, thoughts misdirecting the question as a slightly different question, and thoughts that lead to incorrect answers. We show that models are effective at identifying most unhelpful thoughts but struggle to recover from the same thoughts when these are injected into their thinking process, causing significant performance drops. Models tend to naively continue the line of reasoning of the injected irrelevant thoughts, which showcases that their self-reevaluation abilities are far from a general "meta-cognitive" awareness. Moreover, we observe non/inverse-scaling trends, where larger models struggle more than smaller ones to recover from short irrelevant thoughts, even when instructed to reevaluate their reasoning. We demonstrate the implications of these findings with a jailbreak experiment using irrelevant thought injection, showing that the smallest models are the least distracted by harmful-response-triggering thoughts. Overall, our findings call for improvement in self-reevaluation of reasoning models to develop better reasoning and safer systems.




Abstract:A central goal for mechanistic interpretability has been to identify the right units of analysis in large language models (LLMs) that causally explain their outputs. While early work focused on individual neurons, evidence that neurons often encode multiple concepts has motivated a shift toward analyzing directions in activation space. A key question is how to find directions that capture interpretable features in an unsupervised manner. Current methods rely on dictionary learning with sparse autoencoders (SAEs), commonly trained over residual stream activations to learn directions from scratch. However, SAEs often struggle in causal evaluations and lack intrinsic interpretability, as their learning is not explicitly tied to the computations of the model. Here, we tackle these limitations by directly decomposing MLP activations with semi-nonnegative matrix factorization (SNMF), such that the learned features are (a) sparse linear combinations of co-activated neurons, and (b) mapped to their activating inputs, making them directly interpretable. Experiments on Llama 3.1, Gemma 2 and GPT-2 show that SNMF derived features outperform SAEs and a strong supervised baseline (difference-in-means) on causal steering, while aligning with human-interpretable concepts. Further analysis reveals that specific neuron combinations are reused across semantically-related features, exposing a hierarchical structure in the MLP's activation space. Together, these results position SNMF as a simple and effective tool for identifying interpretable features and dissecting concept representations in LLMs.
Abstract:Large language models (LLMs) often acquire knowledge during pretraining that is undesirable in downstream deployments, e.g., sensitive information or copyrighted content. Existing approaches for removing such knowledge rely on fine-tuning, training low-rank adapters or fact-level editing, but these are either too coarse, too shallow, or ineffective. In this work, we propose PISCES (Precise In-parameter Suppression for Concept EraSure), a novel framework for precisely erasing entire concepts from model parameters by directly editing directions that encode them in parameter space. PISCES uses a disentangler model to decompose MLP vectors into interpretable features, identifies those associated with a target concept using automated interpretability techniques, and removes them from model parameters. Experiments on Gemma 2 and Llama 3.1 over various concepts show that PISCES achieves modest gains in efficacy over leading erasure methods, reducing accuracy on the target concept to as low as 7.7%, while dramatically improving erasure specificity (by up to 31%) and robustness (by up to 38%). Overall, these results demonstrate that feature-based in-parameter editing enables a more precise and reliable approach for removing conceptual knowledge in language models.




Abstract:Large Vision Language Models (VLMs) have long struggled with spatial reasoning tasks. Surprisingly, even simple spatial reasoning tasks, such as recognizing "under" or "behind" relationships between only two objects, pose significant challenges for current VLMs. In this work, we study the spatial reasoning challenge from the lens of mechanistic interpretability, diving into the model's internal states to examine the interactions between image and text tokens. By tracing attention distribution over the image through out intermediate layers, we observe that successful spatial reasoning correlates strongly with the model's ability to align its attention distribution with actual object locations, particularly differing between familiar and unfamiliar spatial relationships. Motivated by these findings, we propose ADAPTVIS based on inference-time confidence scores to sharpen the attention on highly relevant regions when confident, while smoothing and broadening the attention window to consider a wider context when confidence is lower. This training-free decoding method shows significant improvement (e.g., up to a 50 absolute point improvement) on spatial reasoning benchmarks such as WhatsUp and VSR with negligible cost. We make code and data publicly available for research purposes at https://github.com/shiqichen17/AdaptVis.




Abstract:Multi-agent systems, where specialized agents collaborate to solve a shared task hold great potential, from increased modularity to simulating complex environments. However, they also have a major caveat -- a single agent can cause the entire system to fail. Consider a simple game where the knowledge to solve the task is distributed between agents, which share information in a communication channel. At each round, any of the agents can terminate the game and make the final prediction, even if they are uncertain about the outcome of their action. Detection of such rogue agents $\textit{before they act}$ may prevent the system's failure. In this work, we propose to $\textit{monitor}$ agents during action prediction and $\textit{intervene}$ when a future error is likely to occur. To test our approach, we introduce WhoDunitEnv, a multi-agent collaboration environment that allows modular control over task complexity and communication structure. Experiments on two variants of WhoDunitEnv and the GovSim environment for resource sustainability show that our approach leads to substantial performance gains up to 17.4% and 20%, respectively. Moreover, a thorough analysis shows that our monitors successfully identify critical points of agent confusion and our interventions effectively stop agent errors from propagating.