Image-to-image translation is the process of converting an image from one domain to another using deep learning techniques.
This paper presents Vision-Language Global Localization (VLG-Loc), a novel global localization method that uses human-readable labeled footprint maps containing only names and areas of distinctive visual landmarks in an environment. While humans naturally localize themselves using such maps, translating this capability to robotic systems remains highly challenging due to the difficulty of establishing correspondences between observed landmarks and those in the map without geometric and appearance details. To address this challenge, VLG-Loc leverages a vision-language model (VLM) to search the robot's multi-directional image observations for the landmarks noted in the map. The method then identifies robot poses within a Monte Carlo localization framework, where the found landmarks are used to evaluate the likelihood of each pose hypothesis. Experimental validation in simulated and real-world retail environments demonstrates superior robustness compared to existing scan-based methods, particularly under environmental changes. Further improvements are achieved through the probabilistic fusion of visual and scan-based localization.
We introduce a finance & accounting benchmark (Finch) for evaluating AI agents on real-world, enterprise-grade professional workflows -- interleaving data entry, structuring, formatting, web search, cross-file retrieval, calculation, modeling, validation, translation, visualization, and reporting. Finch is sourced from authentic enterprise workspaces at Enron (15,000 spreadsheets and 500,000 emails from 150 employees) and other financial institutions, preserving in-the-wild messiness across multimodal artifacts (text, tables, formulas, charts, code, and images) and spanning diverse domains such as budgeting, trading, and asset management. We propose a workflow construction process that combines LLM-assisted discovery with expert annotation: (1) LLM-assisted, expert-verified derivation of workflows from real-world email threads and version histories of spreadsheet files, and (2) meticulous expert annotation for workflows, requiring over 700 hours of domain-expert effort. This yields 172 composite workflows with 384 tasks, involving 1,710 spreadsheets with 27 million cells, along with PDFs and other artifacts, capturing the intrinsically messy, long-horizon, knowledge-intensive, and collaborative nature of real-world enterprise work. We conduct both human and automated evaluations of frontier AI systems including GPT 5.1, Claude Sonnet 4.5, Gemini 3 Pro, Grok 4, and Qwen 3 Max, and GPT 5.1 Pro spends 48 hours in total yet passes only 38.4% of workflows, while Claude Sonnet 4.5 passes just 25.0%. Comprehensive case studies further surface the challenges that real-world enterprise workflows pose for AI agents.
Textual explanations make image classifier decisions transparent by describing the prediction rationale in natural language. Large vision-language models can generate captions but are designed for general visual understanding, not classifier-specific reasoning. Existing zero-shot explanation methods align global image features with language, producing descriptions of what is visible rather than what drives the prediction. We propose TEXTER, which overcomes this limitation by isolating decision-critical features before alignment. TEXTER identifies the neurons contributing to the prediction and emphasizes the features encoded in those neurons -- i.e., the decision-critical features. It then maps these emphasized features into the CLIP feature space to retrieve textual explanations that reflect the model's reasoning. A sparse autoencoder further improves interpretability, particularly for Transformer architectures. Extensive experiments show that TEXTER generates more faithful and interpretable explanations than existing methods. The code will be publicly released.
User interface to code (UI2Code) aims to generate executable code that can faithfully reconstruct a given input UI. Prior work focuses largely on web pages and mobile screens, leaving app widgets underexplored. Unlike web or mobile UIs with rich hierarchical context, widgets are compact, context-free micro-interfaces that summarize key information through dense layouts and iconography under strict spatial constraints. Moreover, while (image, code) pairs are widely available for web or mobile UIs, widget designs are proprietary and lack accessible markup. We formalize this setting as the Widget-to-Code (Widget2Code) and introduce an image-only widget benchmark with fine-grained, multi-dimensional evaluation metrics. Benchmarking shows that although generalized multimodal large language models (MLLMs) outperform specialized UI2Code methods, they still produce unreliable and visually inconsistent code. To address these limitations, we develop a baseline that jointly advances perceptual understanding and structured code generation. At the perceptual level, we follow widget design principles to assemble atomic components into complete layouts, equipped with icon retrieval and reusable visualization modules. At the system level, we design an end-to-end infrastructure, WidgetFactory, which includes a framework-agnostic widget-tailored domain-specific language (WidgetDSL) and a compiler that translates it into multiple front-end implementations (e.g., React, HTML/CSS). An adaptive rendering module further refines spatial dimensions to satisfy compactness constraints. Together, these contributions substantially enhance visual fidelity, establishing a strong baseline and unified infrastructure for future Widget2Code research.
Automated generation of diagnostic pathology reports directly from whole slide images (WSIs) is an emerging direction in computational pathology. Translating high-resolution tissue patterns into clinically coherent text remains difficult due to large morphological variability and the complex structure of pathology narratives. We introduce MPath, a lightweight multimodal framework that conditions a pretrained biomedical language model (BioBART) on WSI-derived visual embeddings through a learned visual-prefix prompting mechanism. Instead of end-to-end vision-language pretraining, MPath leverages foundation-model WSI features (CONCH + Titan) and injects them into BioBART via a compact projection module, keeping the language backbone frozen for stability and data efficiency. MPath was developed and evaluated on the RED 2025 Grand Challenge dataset and ranked 4th in Test Phase 2, despite limited submission opportunities. The results highlight the potential of prompt-based multimodal conditioning as a scalable and interpretable strategy for pathology report generation.




Text-to-image retrieval in remote sensing (RS) has advanced rapidly with the rise of large vision-language models (LVLMs) tailored for aerial and satellite imagery, culminating in remote sensing large vision-language models (RS-LVLMS). However, limited explainability and poor handling of complex spatial relations remain key challenges for real-world use. To address these issues, we introduce RUNE (Reasoning Using Neurosymbolic Entities), an approach that combines Large Language Models (LLMs) with neurosymbolic AI to retrieve images by reasoning over the compatibility between detected entities and First-Order Logic (FOL) expressions derived from text queries. Unlike RS-LVLMs that rely on implicit joint embeddings, RUNE performs explicit reasoning, enhancing performance and interpretability. For scalability, we propose a logic decomposition strategy that operates on conditioned subsets of detected entities, guaranteeing shorter execution time compared to neural approaches. Rather than using foundation models for end-to-end retrieval, we leverage them only to generate FOL expressions, delegating reasoning to a neurosymbolic inference module. For evaluation we repurpose the DOTA dataset, originally designed for object detection, by augmenting it with more complex queries than in existing benchmarks. We show the LLM's effectiveness in text-to-logic translation and compare RUNE with state-of-the-art RS-LVLMs, demonstrating superior performance. We introduce two metrics, Retrieval Robustness to Query Complexity (RRQC) and Retrieval Robustness to Image Uncertainty (RRIU), which evaluate performance relative to query complexity and image uncertainty. RUNE outperforms joint-embedding models in complex RS retrieval tasks, offering gains in performance, robustness, and explainability. We show RUNE's potential for real-world RS applications through a use case on post-flood satellite image retrieval.
Over the past decade, several studies have explored the potential of magnetic resonance fingerprinting (MRF) for the quantification of brain hemodynamics, oxygenation, and perfusion. Recent advances in simulation models and reconstruction frameworks have also significantly enhanced the accuracy of vascular parameter estimation. This review provides an overview of key vascular MRF studies, emphasizing advancements in geometrical models for vascular simulations, novel sequences, and state-of-the-art reconstruction techniques incorporating machine learning and deep learning algorithms. Both pre-clinical and clinical applications are discussed. Based on these findings, we outline future directions and development areas that need to be addressed to facilitate their clinical translation. Evidence Level N/A. Technical Efficacy Stage 1.




Despite significant progress in 4D content generation, the conversion of monocular videos into high-quality animated 3D assets with explicit 4D meshes remains considerably challenging. The scarcity of large-scale, naturally captured 4D mesh datasets further limits the ability to train generalizable video-to-4D models from scratch in a purely data-driven manner. Meanwhile, advances in image-to-3D generation, supported by extensive datasets, offer powerful prior models that can be leveraged. To better utilize these priors while minimizing reliance on 4D supervision, we introduce SWiT-4D, a Sliding-Window Transformer for lossless, parameter-free temporal 4D mesh generation. SWiT-4D integrates seamlessly with any Diffusion Transformer (DiT)-based image-to-3D generator, adding spatial-temporal modeling across video frames while preserving the original single-image forward process, enabling 4D mesh reconstruction from videos of arbitrary length. To recover global translation, we further introduce an optimization-based trajectory module tailored for static-camera monocular videos. SWiT-4D demonstrates strong data efficiency: with only a single short (<10s) video for fine-tuning, it achieves high-fidelity geometry and stable temporal consistency, indicating practical deployability under extremely limited 4D supervision. Comprehensive experiments on both in-domain zoo-test sets and challenging out-of-domain benchmarks (C4D, Objaverse, and in-the-wild videos) show that SWiT-4D consistently outperforms existing baselines in temporal smoothness. Project page: https://animotionlab.github.io/SWIT4D/




Forecasting from partial observations is central to world modeling. Many recent methods represent the world through images, and reduce forecasting to stochastic video generation. Although such methods excel at realism and visual fidelity, predicting pixels is computationally intensive and not directly useful in many applications, as it requires translating RGB into signals useful for decision making. An alternative approach uses features from vision foundation models (VFMs) as world representations, performing deterministic regression to predict future world states. These features can be directly translated into actionable signals such as semantic segmentation and depth, while remaining computationally efficient. However, deterministic regression averages over multiple plausible futures, undermining forecast accuracy by failing to capture uncertainty. To address this crucial limitation, we introduce a generative forecaster that performs autoregressive flow matching in VFM feature space. Our key insight is that generative modeling in this space requires encoding VFM features into a compact latent space suitable for diffusion. We show that this latent space preserves information more effectively than previously used PCA-based alternatives, both for forecasting and other applications, such as image generation. Our latent predictions can be easily decoded into multiple useful and interpretable output modalities: semantic segmentation, depth, surface normals, and even RGB. With matched architecture and compute, our method produces sharper and more accurate predictions than regression across all modalities. Our results suggest that stochastic conditional generation of VFM features offers a promising and scalable foundation for future world models.
The dynamics of glaciers and ice shelf fronts significantly impact the mass balance of ice sheets and coastal sea levels. To effectively monitor glacier conditions, it is crucial to consistently estimate positional shifts of glacier calving fronts. AMD-HookNet firstly introduces a pure two-branch convolutional neural network (CNN) for glacier segmentation. Yet, the local nature and translational invariance of convolution operations, while beneficial for capturing low-level details, restricts the model ability to maintain long-range dependencies. In this study, we propose AMD-HookNet++, a novel advanced hybrid CNN-Transformer feature enhancement method for segmenting glaciers and delineating calving fronts in synthetic aperture radar images. Our hybrid structure consists of two branches: a Transformer-based context branch to capture long-range dependencies, which provides global contextual information in a larger view, and a CNN-based target branch to preserve local details. To strengthen the representation of the connected hybrid features, we devise an enhanced spatial-channel attention module to foster interactions between the hybrid CNN-Transformer branches through dynamically adjusting the token relationships from both spatial and channel perspectives. Additionally, we develop a pixel-to-pixel contrastive deep supervision to optimize our hybrid model by integrating pixelwise metric learning into glacier segmentation. Through extensive experiments and comprehensive quantitative and qualitative analyses on the challenging glacier segmentation benchmark dataset CaFFe, we show that AMD-HookNet++ sets a new state of the art with an IoU of 78.2 and a HD95 of 1,318 m, while maintaining a competitive MDE of 367 m. More importantly, our hybrid model produces smoother delineations of calving fronts, resolving the issue of jagged edges typically seen in pure Transformer-based approaches.