Efficient deployment of large language models (LLMs) requires extreme quantization, forcing a critical trade-off between low-bit efficiency and performance. Residual binarization enables hardware-friendly, matmul-free inference by stacking binary ($\pm$1) layers, but is plagued by pathological feature co-adaptation. We identify a key failure mode, which we term inter-path adaptation: during quantization-aware training (QAT), parallel residual binary paths learn redundant features, degrading the error-compensation structure and limiting the expressive capacity of the model. While prior work relies on heuristic workarounds (e.g., path freezing) that constrain the solution space, we propose RaBiT, a novel quantization framework that resolves co-adaptation by algorithmically enforcing a residual hierarchy. Its core mechanism sequentially derives each binary path from a single shared full-precision weight, which ensures that every path corrects the error of the preceding one. This process is stabilized by a robust initialization that prioritizes functional preservation over mere weight approximation. RaBiT redefines the 2-bit accuracy-efficiency frontier: it achieves state-of-the-art performance, rivals even hardware-intensive Vector Quantization (VQ) methods, and delivers a $4.49\times$ inference speed-up over full-precision models on an RTX 4090.
Standard sequence mixing layers used in language models struggle to balance efficiency and performance. Self-attention performs well on long context tasks but has expensive quadratic compute and linear memory costs, while linear attention and SSMs use only linear compute and constant memory but struggle with long context processing. In this paper, we develop a sequence mixing layer that aims to find a better compromise between memory-compute costs and long-context processing, which we call online vector-quantized (OVQ) attention. OVQ-attention requires linear compute costs and constant memory, but, unlike linear attention and SSMs, it uses a sparse memory update that allows it to greatly increase the size of its memory state and, consequently, memory capacity. We develop a theoretical basis for OVQ-attention based on Gaussian mixture regression, and we test it on a variety of synthetic long context tasks and on long context language modeling. OVQ-attention shows significant improvements over linear attention baselines and the original VQ-attention, on which OVQ-attention was inspired. It demonstrates competitive, and sometimes identical, performance to strong self-attention baselines up 64k sequence length, despite using a small fraction of the memory of full self-attention.
Human motion data is inherently rich and complex, containing both semantic content and subtle stylistic features that are challenging to model. We propose a novel method for effective disentanglement of the style and content in human motion data to facilitate style transfer. Our approach is guided by the insight that content corresponds to coarse motion attributes while style captures the finer, expressive details. To model this hierarchy, we employ Residual Vector Quantized Variational Autoencoders (RVQ-VAEs) to learn a coarse-to-fine representation of motion. We further enhance the disentanglement by integrating contrastive learning and a novel information leakage loss with codebook learning to organize the content and the style across different codebooks. We harness this disentangled representation using our simple and effective inference-time technique Quantized Code Swapping, which enables motion style transfer without requiring any fine-tuning for unseen styles. Our framework demonstrates strong versatility across multiple inference applications, including style transfer, style removal, and motion blending.
Deep Learning models encode rich semantic information in their hidden representations. However, it remains challenging to understand which parts of this information models actually rely on when making predictions. A promising line of post-hoc concept-based explanation methods relies on clustering token representations. However, commonly used approaches such as hierarchical clustering are computationally infeasible for large-scale datasets, and K-Means often yields shallow or frequency-dominated clusters. We propose the vector quantized latent concept (VQLC) method, a framework built upon the vector quantized-variational autoencoder (VQ-VAE) architecture that learns a discrete codebook mapping continuous representations to concept vectors. We perform thorough evaluations and show that VQLC improves scalability while maintaining comparable quality of human-understandable explanations.
Vector quantization (VQ) underpins modern generative and representation models by turning continuous latents into discrete tokens. Yet hard nearest-neighbor assignments are non-differentiable and are typically optimized with heuristic straight-through estimators, which couple the update step size to the quantization gap and train each code in isolation, leading to unstable gradients and severe codebook under-utilization at scale. In this paper, we introduce GRIT-VQ (Generalized Radius and Integrated Transform-Vector Quantization), a unified surrogate framework that keeps hard assignments in the forward pass while making VQ fully differentiable. GRIT-VQ replaces the straight-through estimator with a radius-based update that moves latents along the quantization direction with a controllable, geometry-aware step, and applies a data-agnostic integrated transform to the codebook so that all codes are updated through shared parameters instead of independently. Our theoretical analysis clarifies the fundamental optimization dynamics introduced by GRIT-VQ, establishing conditions for stable gradient flow, coordinated codebook evolution, and reliable avoidance of collapse across a broad family of quantizers. Across image reconstruction, image generation, and recommendation tokenization benchmarks, GRIT-VQ consistently improves reconstruction error, generative quality, and recommendation accuracy while substantially increasing codebook utilization compared to existing VQ variants.
Vision-Language-Action (VLA) models achieve preliminary generalization through pretraining on large scale robot teleoperation datasets. However, acquiring datasets that comprehensively cover diverse tasks and environments is extremely costly and difficult to scale. In contrast, human demonstration videos offer a rich and scalable source of diverse scenes and manipulation behaviors, yet their lack of explicit action supervision hinders direct utilization. Prior work leverages VQ-VAE based frameworks to learn latent actions from human videos in an unsupervised manner. Nevertheless, since the training objective primarily focuses on reconstructing visual appearances rather than capturing inter-frame dynamics, the learned representations tend to rely on spurious visual cues, leading to shortcut learning and entangled latent representations that hinder transferability. To address this, we propose ConLA, an unsupervised pretraining framework for learning robotic policies from human videos. ConLA introduces a contrastive disentanglement mechanism that leverages action category priors and temporal cues to isolate motion dynamics from visual content, effectively mitigating shortcut learning. Extensive experiments show that ConLA achieves strong performance across diverse benchmarks. Notably, by pretraining solely on human videos, our method for the first time surpasses the performance obtained with real robot trajectory pretraining, highlighting its ability to extract pure and semantically consistent latent action representations for scalable robot learning.
VQ-based image generation typically follows a two-stage pipeline: a tokenizer encodes images into discrete tokens, and a generative model learns their dependencies for reconstruction. However, improved tokenization in the first stage does not necessarily enhance the second-stage generation, as existing methods fail to constrain token dependencies. This mismatch forces the generative model to learn from unordered distributions, leading to bias and weak coherence. To address this, we propose native visual tokenization, which enforces causal dependencies during tokenization. Building on this idea, we introduce NativeTok, a framework that achieves efficient reconstruction while embedding relational constraints within token sequences. NativeTok consists of: (1) a Meta Image Transformer (MIT) for latent image modeling, and (2) a Mixture of Causal Expert Transformer (MoCET), where each lightweight expert block generates a single token conditioned on prior tokens and latent features. We further design a Hierarchical Native Training strategy that updates only new expert blocks, ensuring training efficiency. Extensive experiments demonstrate the effectiveness of NativeTok.
Vector-quantized variational autoencoders (VQ-VAEs) are central to models that rely on high reconstruction fidelity, from neural compression to generative pipelines. Hierarchical extensions, such as VQ-VAE2, are often credited with superior reconstruction performance because they split global and local features across multiple levels. However, since higher levels derive all their information from lower levels, they should not carry additional reconstructive content beyond what the lower-level already encodes. Combined with recent advances in training objectives and quantization mechanisms, this leads us to ask whether a single-level VQ-VAE, with matched representational budget and no codebook collapse, can equal the reconstruction fidelity of its hierarchical counterpart. Although the multi-scale structure of hierarchical models may improve perceptual quality in downstream tasks, the effect of hierarchy on reconstruction accuracy, isolated from codebook utilization and overall representational capacity, remains empirically underexamined. We revisit this question by comparing a two-level VQ-VAE and a capacity-matched single-level model on high-resolution ImageNet images. Consistent with prior observations, we confirm that inadequate codebook utilization limits single-level VQ-VAEs and that overly high-dimensional embeddings destabilize quantization and increase codebook collapse. We show that lightweight interventions such as initialization from data, periodic reset of inactive codebook vectors, and systematic tuning of codebook hyperparameters significantly reduce collapse. Our results demonstrate that when representational budgets are matched, and codebook collapse is mitigated, single-level VQ-VAEs can match the reconstruction fidelity of hierarchical variants, challenging the assumption that hierarchical quantization is inherently superior for high-quality reconstructions.
Item indexing, which maps a large corpus of items into compact discrete representations, is critical for both discriminative and generative recommender systems, yet existing Vector Quantization (VQ)-based approaches struggle with the highly skewed and non-stationary item distributions common in streaming industry recommenders, leading to poor assignment accuracy, imbalanced cluster occupancy, and insufficient cluster separation. To address these challenges, we propose MERGE, a next-generation item indexing paradigm that adaptively constructs clusters from scratch, dynamically monitors cluster occupancy, and forms hierarchical index structures via fine-to-coarse merging. Extensive experiments demonstrate that MERGE significantly improves assignment accuracy, cluster uniformity, and cluster separation compared with existing indexing methods, while online A/B tests show substantial gains in key business metrics, highlighting its potential as a foundational indexing approach for large-scale recommendation.
The field of image generation is currently bifurcated into autoregressive (AR) models operating on discrete tokens and diffusion models utilizing continuous latents. This divide, rooted in the distinction between VQ-VAEs and VAEs, hinders unified modeling and fair benchmarking. Finite Scalar Quantization (FSQ) offers a theoretical bridge, yet vanilla FSQ suffers from a critical flaw: its equal-interval quantization can cause activation collapse. This mismatch forces a trade-off between reconstruction fidelity and information efficiency. In this work, we resolve this dilemma by simply replacing the activation function in original FSQ with a distribution-matching mapping to enforce a uniform prior. Termed iFSQ, this simple strategy requires just one line of code yet mathematically guarantees both optimal bin utilization and reconstruction precision. Leveraging iFSQ as a controlled benchmark, we uncover two key insights: (1) The optimal equilibrium between discrete and continuous representations lies at approximately 4 bits per dimension. (2) Under identical reconstruction constraints, AR models exhibit rapid initial convergence, whereas diffusion models achieve a superior performance ceiling, suggesting that strict sequential ordering may limit the upper bounds of generation quality. Finally, we extend our analysis by adapting Representation Alignment (REPA) to AR models, yielding LlamaGen-REPA. Codes is available at https://github.com/Tencent-Hunyuan/iFSQ