Abstract:Vector quantization (VQ) underpins modern generative and representation models by turning continuous latents into discrete tokens. Yet hard nearest-neighbor assignments are non-differentiable and are typically optimized with heuristic straight-through estimators, which couple the update step size to the quantization gap and train each code in isolation, leading to unstable gradients and severe codebook under-utilization at scale. In this paper, we introduce GRIT-VQ (Generalized Radius and Integrated Transform-Vector Quantization), a unified surrogate framework that keeps hard assignments in the forward pass while making VQ fully differentiable. GRIT-VQ replaces the straight-through estimator with a radius-based update that moves latents along the quantization direction with a controllable, geometry-aware step, and applies a data-agnostic integrated transform to the codebook so that all codes are updated through shared parameters instead of independently. Our theoretical analysis clarifies the fundamental optimization dynamics introduced by GRIT-VQ, establishing conditions for stable gradient flow, coordinated codebook evolution, and reliable avoidance of collapse across a broad family of quantizers. Across image reconstruction, image generation, and recommendation tokenization benchmarks, GRIT-VQ consistently improves reconstruction error, generative quality, and recommendation accuracy while substantially increasing codebook utilization compared to existing VQ variants.
Abstract:While Transformer architectures have demonstrated impressive scalability across domains, they continue to face challenges in long-context reasoning, computational efficiency, and structural generalization - largely due to rigid layer stacking, dense attention, and reliance on positional encodings. We present ReSSFormer, a Recursive Sparse Structured Transformer that integrates three complementary innovations: Recurrent Reasoning & Memory Unit (R2MU) for iterative reasoning with bounded depth, Adaptive Sparse Attention Module (ASAM) for efficient and focused context selection, and Self-Organizing Encoder Structure (SOES) for position-free structure induction. ReSSFormer replaces conventional depth stacking with recurrent inference, substitutes full attention with token- and expert-level sparsity, and models latent token topology directly from content. Across language modeling, multi-hop QA, and structure-sensitive tasks, ReSSFormer consistently outperforms strong baselines under comparable FLOPs and parameter budgets, highlighting its scalability, efficiency, and structural flexibility.
Abstract:Gradient clipping is widely used to stabilize deep network training, but its formulation as a hard, fixed threshold limits flexibility and ignores gradient distribution dynamics. We propose SPAMP (Statistical Per-layer Adaptive Modulation and Projection), a unified framework that generalizes clipping into smooth, per-layer gradient shaping. SPAMP tracks local gradient statistics, dynamically estimates thresholds, and applies power-based transformations to modulate update magnitudes in a differentiable manner. This perspective recasts clipping and warmup as dual mechanisms for controlling the effective update scale $\eta_t \|g_t\|$, offering a principled alternative to rigid heuristics. Extensive experiments across image and language tasks demonstrate that SPAMP improves stability, convergence, and robustness over existing methods.
Abstract:One-step generative modeling seeks to generate high-quality data samples in a single function evaluation, significantly improving efficiency over traditional diffusion or flow-based models. In this work, we introduce Modular MeanFlow (MMF), a flexible and theoretically grounded approach for learning time-averaged velocity fields. Our method derives a family of loss functions based on a differential identity linking instantaneous and average velocities, and incorporates a gradient modulation mechanism that enables stable training without sacrificing expressiveness. We further propose a curriculum-style warmup schedule to smoothly transition from coarse supervision to fully differentiable training. The MMF formulation unifies and generalizes existing consistency-based and flow-matching methods, while avoiding expensive higher-order derivatives. Empirical results across image synthesis and trajectory modeling tasks demonstrate that MMF achieves competitive sample quality, robust convergence, and strong generalization, particularly under low-data or out-of-distribution settings.