Topic:Trajectory Prediction
What is Trajectory Prediction? Trajectory prediction is the process of forecasting the future path of moving objects based on historical trajectory data.
Papers and Code
Apr 30, 2025
Abstract:The Hawkes process (HP) is commonly used to model event sequences with self-reinforcing dynamics, including electronic health records (EHRs). Traditional HPs capture self-reinforcement via parametric impact functions that can be inspected to understand how each event modulates the intensity of others. Neural network-based HPs offer greater flexibility, resulting in improved fit and prediction performance, but at the cost of interpretability, which is often critical in healthcare. In this work, we aim to understand and improve upon this tradeoff. We propose a novel HP formulation in which impact functions are modeled by defining a flexible impact kernel, instantiated as a neural network, in event embedding space, which allows us to model large-scale event sequences with many event types. This approach is more flexible than traditional HPs yet more interpretable than other neural network approaches, and allows us to explicitly trade flexibility for interpretability by adding transformer encoder layers to further contextualize the event embeddings. Results show that our method accurately recovers impact functions in simulations, achieves competitive performance on MIMIC-IV procedure dataset, and gains clinically meaningful interpretation on XX-EHR with children diagnosis dataset even without transformer layers. This suggests that our flexible impact kernel is often sufficient to capture self-reinforcing dynamics in EHRs and other data effectively, implying that interpretability can be maintained without loss of performance.
Via

Apr 29, 2025
Abstract:This paper introduces SoccerDiffusion, a transformer-based diffusion model designed to learn end-to-end control policies for humanoid robot soccer directly from real-world gameplay recordings. Using data collected from RoboCup competitions, the model predicts joint command trajectories from multi-modal sensor inputs, including vision, proprioception, and game state. We employ a distillation technique to enable real-time inference on embedded platforms that reduces the multi-step diffusion process to a single step. Our results demonstrate the model's ability to replicate complex motion behaviors such as walking, kicking, and fall recovery both in simulation and on physical robots. Although high-level tactical behavior remains limited, this work provides a robust foundation for subsequent reinforcement learning or preference optimization methods. We release the dataset, pretrained models, and code under: https://bit-bots.github.io/SoccerDiffusion
Via

Apr 29, 2025
Abstract:Alzheimer's Disease (AD) is marked by significant inter-individual variability in its progression, complicating accurate prognosis and personalized care planning. This heterogeneity underscores the critical need for predictive models capable of forecasting patient-specific disease trajectories. Artificial Intelligence (AI) offers powerful tools to address this challenge by analyzing complex, multi-modal, and longitudinal patient data. This paper provides a comprehensive survey of AI methodologies applied to personalized AD progression prediction. We review key approaches including state-space models for capturing temporal dynamics, deep learning techniques like Recurrent Neural Networks for sequence modeling, Graph Neural Networks (GNNs) for leveraging network structures, and the emerging concept of AI-driven digital twins for individualized simulation. Recognizing that data limitations often impede progress, we examine common challenges such as high dimensionality, missing data, and dataset imbalance. We further discuss AI-driven mitigation strategies, with a specific focus on synthetic data generation using Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) to augment and balance datasets. The survey synthesizes the strengths and limitations of current approaches, emphasizing the trend towards multimodal integration and the persistent need for model interpretability and generalizability. Finally, we identify critical open challenges, including robust external validation, clinical integration, and ethical considerations, and outline promising future research directions such as hybrid models, causal inference, and federated learning. This review aims to consolidate current knowledge and guide future efforts in developing clinically relevant AI tools for personalized AD prognostication.
* 25 pages, 11 figures
Via

Apr 28, 2025
Abstract:Analyzing a player's technique in table tennis requires knowledge of the ball's 3D trajectory and spin. While, the spin is not directly observable in standard broadcasting videos, we show that it can be inferred from the ball's trajectory in the video. We present a novel method to infer the initial spin and 3D trajectory from the corresponding 2D trajectory in a video. Without ground truth labels for broadcast videos, we train a neural network solely on synthetic data. Due to the choice of our input data representation, physically correct synthetic training data, and using targeted augmentations, the network naturally generalizes to real data. Notably, these simple techniques are sufficient to achieve generalization. No real data at all is required for training. To the best of our knowledge, we are the first to present a method for spin and trajectory prediction in simple monocular broadcast videos, achieving an accuracy of 92.0% in spin classification and a 2D reprojection error of 0.19% of the image diagonal.
* To be published in 2025 IEEE/CVF International Conference on Computer
Vision and Pattern Recognition Workshops (CVPRW)
Via

Apr 29, 2025
Abstract:This thesis presents a unified control framework for agile and fault-tolerant flight of the Multi-Modal Mobility Morphobot (M4) in aerial mode. The M4 robot is capable of transitioning between ground and aerial locomotion. The articulated legs enable more dynamic maneuvers than a standard quadrotor platform. A nonlinear model predictive control (NMPC) approach is developed to simultaneously plan posture manipulation and thrust vectoring actions, allowing the robot to execute sharp turns and dynamic flight trajectories. The framework integrates an agile and fault-tolerant control logic that enables precise tracking under aggressive maneuvers while compensating for actuator failures, ensuring continued operation without significant performance degradation. Simulation results validate the effectiveness of the proposed method, demonstrating accurate trajectory tracking and robust recovery from faults, contributing to resilient autonomous flight in complex environments.
Via

Apr 28, 2025
Abstract:We address the problem of predicting the next state of a dynamical system governed by unknown temporal partial differential equations (PDEs) using only a short trajectory. While standard transformers provide a natural black-box solution to this task, the presence of a well-structured evolution operator in the data suggests a more tailored and efficient approach. Specifically, when the PDE is fully known, classical numerical solvers can evolve the state accurately with only a few parameters. Building on this observation, we introduce DISCO, a model that uses a large hypernetwork to process a short trajectory and generate the parameters of a much smaller operator network, which then predicts the next state through time integration. Our framework decouples dynamics estimation (i.e., DISCovering an evolution operator from a short trajectory) from state prediction (i.e., evolving this operator). Experiments show that pretraining our model on diverse physics datasets achieves state-of-the-art performance while requiring significantly fewer epochs. Moreover, it generalizes well and remains competitive when fine-tuned on downstream tasks.
Via

Apr 28, 2025
Abstract:Foot trajectory planning for dry adhesion legged climbing robots presents challenges, as the phases of foot detachment, swing, and adhesion significantly influence the adhesion and detachment forces essential for stable climbing. To tackle this, an end-to-end foot trajectory and force optimization framework (FTFOF) is proposed, which optimizes foot adhesion and detachment forces through trajectory adjustments. This framework accepts general foot trajectory constraints and user-defined parameters as input, ultimately producing an optimal single foot trajectory. It integrates three-segment $C^2$ continuous Bezier curves, tailored to various foot structures, enabling the generation of effective climbing trajectories. A dilate-based GRU predictive model establishes the relationship between foot trajectories and the corresponding foot forces. Multi-objective optimization algorithms, combined with a redundancy hierarchical strategy, identify the most suitable foot trajectory for specific tasks, thereby ensuring optimal performance across detachment force, adhesion force and vibration amplitude. Experimental validation on the quadruped climbing robot MST-M3F showed that, compared to commonly used trajectories in existing legged climbing robots, the proposed framework achieved reductions in maximum detachment force by 28 \%, vibration amplitude by 82 \%, which ensures the stable climbing of dry adhesion legged climbing robots.
Via

Apr 27, 2025
Abstract:Although existing 3D perception algorithms have demonstrated significant improvements in performance, their deployment on edge devices continues to encounter critical challenges due to substantial runtime latency. We propose a new benchmark tailored for online evaluation by considering runtime latency. Based on the benchmark, we build a Latency-Aware 3D Streaming Perception (LASP) framework that addresses the latency issue through two primary components: 1) latency-aware history integration, which extends query propagation into a continuous process, ensuring the integration of historical feature regardless of varying latency; 2) latency-aware predictive detection, a module that compensates the detection results with the predicted trajectory and the posterior accessed latency. By incorporating the latency-aware mechanism, our method shows generalization across various latency levels, achieving an online performance that closely aligns with 80\% of its offline evaluation on the Jetson AGX Orin without any acceleration techniques.
Via

Apr 27, 2025
Abstract:This paper introduces a novel trajectory planner for autonomous robots, specifically designed to enhance navigation by incorporating dynamic obstacle avoidance within the Robot Operating System 2 (ROS2) and Navigation 2 (Nav2) framework. The proposed method utilizes Model Predictive Control (MPC) with a focus on handling the uncertainties associated with the movement prediction of dynamic obstacles. Unlike existing Nav2 trajectory planners which primarily deal with static obstacles or react to the current position of dynamic obstacles, this planner predicts future obstacle positions using a stochastic Vector Auto-Regressive Model (VAR). The obstacles' future positions are represented by probability distributions, and collision avoidance is achieved through constraints based on the Mahalanobis distance, ensuring the robot avoids regions where obstacles are likely to be. This approach considers the robot's kinodynamic constraints, enabling it to track a reference path while adapting to real-time changes in the environment. The paper details the implementation, including obstacle prediction, tracking, and the construction of feasible sets for MPC. Simulation results in a Gazebo environment demonstrate the effectiveness of this method in scenarios where robots must navigate around each other, showing improved collision avoidance capabilities.
* This work has been accepted to IFAC for publication under a Creative
Commons Licence CC-BY-NC-ND
Via

Apr 26, 2025
Abstract:With the development of embodied artificial intelligence, robotic research has increasingly focused on complex tasks. Existing simulation platforms, however, are often limited to idealized environments, simple task scenarios and lack data interoperability. This restricts task decomposition and multi-task learning. Additionally, current simulation platforms face challenges in dynamic pedestrian modeling, scene editability, and synchronization between virtual and real assets. These limitations hinder real world robot deployment and feedback. To address these challenges, we propose DVS (Dynamic Virtual-Real Simulation Platform), a platform for dynamic virtual-real synchronization in mobile robotic tasks. DVS integrates a random pedestrian behavior modeling plugin and large-scale, customizable indoor scenes for generating annotated training datasets. It features an optical motion capture system, synchronizing object poses and coordinates between virtual and real world to support dynamic task benchmarking. Experimental validation shows that DVS supports tasks such as pedestrian trajectory prediction, robot path planning, and robotic arm grasping, with potential for both simulation and real world deployment. In this way, DVS represents more than just a versatile robotic platform; it paves the way for research in human intervention in robot execution tasks and real-time feedback algorithms in virtual-real fusion environments. More information about the simulation platform is available on https://immvlab.github.io/DVS/.
Via
