To serve global users safely and productively, LLMs need culture-specific knowledge that might not be learned during pre-training. How do we find such knowledge that is (1) salient to in-group users, but (2) unknown to LLMs? The most common solutions are single-initiative: either researchers define challenging questions that users passively answer (traditional annotation), or users actively produce data that researchers structure as benchmarks (knowledge extraction). The process would benefit from mixed-initiative collaboration, where users guide the process to meaningfully reflect their cultures, and LLMs steer the process towards more challenging questions that meet the researcher's goals. We propose a mixed-initiative methodology called CultureCartography. Here, an LLM initializes annotation with questions for which it has low-confidence answers, making explicit both its prior knowledge and the gaps therein. This allows a human respondent to fill these gaps and steer the model towards salient topics through direct edits. We implement this methodology as a tool called CultureExplorer. Compared to a baseline where humans answer LLM-proposed questions, we find that CultureExplorer more effectively produces knowledge that leading models like DeepSeek R1 and GPT-4o are missing, even with web search. Fine-tuning on this data boosts the accuracy of Llama-3.1-8B by up to 19.2% on related culture benchmarks.
Evaluating the abilities of large language models (LLMs) for tasks that require long-term memory and thus long-context reasoning, for example in conversational settings, is hampered by the existing benchmarks, which often lack narrative coherence, cover narrow domains, and only test simple recall-oriented tasks. This paper introduces a comprehensive solution to these challenges. First, we present a novel framework for automatically generating long (up to 10M tokens), coherent, and topically diverse conversations, accompanied by probing questions targeting a wide range of memory abilities. From this, we construct BEAM, a new benchmark comprising 100 conversations and 2,000 validated questions. Second, to enhance model performance, we propose LIGHT-a framework inspired by human cognition that equips LLMs with three complementary memory systems: a long-term episodic memory, a short-term working memory, and a scratchpad for accumulating salient facts. Our experiments on BEAM reveal that even LLMs with 1M token context windows (with and without retrieval-augmentation) struggle as dialogues lengthen. In contrast, LIGHT consistently improves performance across various models, achieving an average improvement of 3.5%-12.69% over the strongest baselines, depending on the backbone LLM. An ablation study further confirms the contribution of each memory component.
Systematic reviews and mapping studies are critical for synthesizing research, identifying gaps, and guiding future work, but they are often labor-intensive and time-consuming. Existing tools provide partial support for specific steps, leaving much of the process manual and error-prone. We present ProfOlaf, a semi-automated tool designed to streamline systematic reviews while maintaining methodological rigor. ProfOlaf supports iterative snowballing for article collection with human-in-the-loop filtering and uses large language models to assist in analyzing articles, extracting key topics, and answering queries about the content of papers. By combining automation with guided manual effort, ProfOlaf enhances the efficiency, quality, and reproducibility of systematic reviews across research fields. A video describing and demonstrating ProfOlaf is available at: https://youtu.be/4noUXfcmxsE
Large Language Models (LLMs) excel at general tasks but underperform in specialized domains like economics and psychology, which require deep, principled understanding. To address this, we introduce ACER (Automated Curriculum-Enhanced Regimen) that transforms generalist models into domain experts without sacrificing their broad capabilities. ACER first synthesizes a comprehensive, textbook-style curriculum by generating a table of contents for a subject and then creating question-answer (QA) pairs guided by Bloom's taxonomy. This ensures systematic topic coverage and progressively increasing difficulty. The resulting synthetic corpus is used for continual pretraining with an interleaved curriculum schedule, aligning learning across both content and cognitive dimensions. Experiments with Llama 3.2 (1B and 3B) show significant gains in specialized MMLU subsets. In challenging domains like microeconomics, where baselines struggle, ACER boosts accuracy by 5 percentage points. Across all target domains, we observe a consistent macro-average improvement of 3 percentage points. Notably, ACER not only prevents catastrophic forgetting but also facilitates positive cross-domain knowledge transfer, improving performance on non-target domains by 0.7 points. Beyond MMLU, ACER enhances performance on knowledge-intensive benchmarks like ARC and GPQA by over 2 absolute points, while maintaining stable performance on general reasoning tasks. Our results demonstrate that ACER offers a scalable and effective recipe for closing critical domain gaps in LLMs.
While a multi-agent approach based on large language models (LLMs) represents a promising strategy to surpass the capabilities of single models, its success is critically dependent on synergistic team composition. However, forming optimal teams is a significant challenge, as the inherent opacity of most models obscures the internal characteristics necessary for effective collaboration. In this paper, we propose an interaction-centric framework for automatic team composition that does not require any prior knowledge including their internal architectures, training data, or task performances. Our method constructs a "language model graph" that maps relationships between models from the semantic coherence of pairwise conversations, and then applies community detection to identify synergistic model clusters. Our experiments with diverse LLMs demonstrate that the proposed method discovers functionally coherent groups that reflect their latent specializations. Priming conversations with specific topics identified synergistic teams which outperform random baselines on downstream benchmarks and achieve comparable accuracy to that of manually-curated teams based on known model specializations. Our findings provide a new basis for the automated design of collaborative multi-agent LLM teams.
The connection between texts is referred to as intertextuality in literary theory, which served as an important theoretical basis in many digital humanities studies. Over the past decade, advancements in natural language processing have ushered intertextuality studies into the quantitative age. Large-scale intertextuality research based on cutting-edge methods has continuously emerged. This paper provides a roadmap for quantitative intertextuality studies, summarizing their data, methods, and applications. Drawing on data from multiple languages and topics, this survey reviews methods from statistics to deep learning. It also summarizes their applications in humanities and social sciences research and the associated platform tools. Driven by advances in computer technology, more precise, diverse, and large-scale intertext studies can be anticipated. Intertextuality holds promise for broader application in interdisciplinary research bridging AI and the humanities.
Online communities for sports fans have surged in popularity, with Reddit's r/PremierLeague emerging as a focal point for fans of one of the globe's most celebrated sports leagues. This boom has helped the Premier League make significant inroads into the US market, increasing viewership and sparking greater interest in its matches. Despite the league's broad appeal, there's still a notable gap in understanding its online fan community. Therefore, we analyzed a substantial dataset of over 1.1 million comments posted from 2013-2022 on r/PremierLeague. Our study delves into the sentiment, topics, and toxicity of these discussions, tracking trends over time, aiming to map out the conversation landscape. The rapid expansion has brought more diverse discussions, but also a worrying rise in negative sentiment and toxicity. Additionally, the subreddit has become a venue for users to voice frustrations about broader societal issues like racism, the COVID-19 pandemic, and political tensions.
Current tool-use large language models (LLMs) are trained on static datasets, enabling them to interact with external tools and perform multi-step, tool-integrated reasoning, which produces tool-call trajectories. However, these models imitate how a query is resolved in a generic tool-call routine, thereby failing to explore possible solutions and demonstrating limited performance in an evolved, dynamic tool-call environment. In this work, we propose PORTool, a reinforcement learning (RL) method that encourages a tool-use LLM to explore various trajectories yielding the correct answer. Specifically, this method starts with generating multiple rollouts for a given query, and some of them share the first few tool-call steps, thereby forming a tree-like structure. Next, we assign rewards to each step, based on its ability to produce a correct answer and make successful tool calls. A shared step across different trajectories receives the same reward, while different steps under the same fork receive different rewards. Finally, these step-wise rewards are used to calculate fork-relative advantages, blended with trajectory-relative advantages, to train the LLM for tool use. The experiments utilize 17 tools to address user queries, covering both time-sensitive and time-invariant topics. We conduct ablation studies to systematically justify the necessity and the design robustness of step-wise rewards. Furthermore, we compare the proposed PORTool with other training approaches and demonstrate significant improvements in final accuracy and the number of tool-call steps.
The rapid growth of research literature, particularly in large language models (LLMs), has made producing comprehensive and current survey papers increasingly difficult. This paper introduces autosurvey2, a multi-stage pipeline that automates survey generation through retrieval-augmented synthesis and structured evaluation. The system integrates parallel section generation, iterative refinement, and real-time retrieval of recent publications to ensure both topical completeness and factual accuracy. Quality is assessed using a multi-LLM evaluation framework that measures coverage, structure, and relevance in alignment with expert review standards. Experimental results demonstrate that autosurvey2 consistently outperforms existing retrieval-based and automated baselines, achieving higher scores in structural coherence and topical relevance while maintaining strong citation fidelity. By combining retrieval, reasoning, and automated evaluation into a unified framework, autosurvey2 provides a scalable and reproducible solution for generating long-form academic surveys and contributes a solid foundation for future research on automated scholarly writing. All code and resources are available at https://github.com/annihi1ation/auto_research.
The impact of different multilingual data mixtures in pretraining large language models (LLMs) has been a topic of ongoing debate, often raising concerns about potential trade-offs between language coverage and model performance (i.e., the curse of multilinguality). In this work, we investigate these assumptions by training 1.1B and 3B parameter LLMs on diverse multilingual corpora, varying the number of languages from 25 to 400. Our study challenges common beliefs surrounding multilingual training. First, we find that combining English and multilingual data does not necessarily degrade the in-language performance of either group, provided that languages have a sufficient number of tokens included in the pretraining corpus. Second, we observe that using English as a pivot language (i.e., a high-resource language that serves as a catalyst for multilingual generalization) yields benefits across language families, and contrary to expectations, selecting a pivot language from within a specific family does not consistently improve performance for languages within that family. Lastly, we do not observe a significant "curse of multilinguality" as the number of training languages increases in models at this scale. Our findings suggest that multilingual data, when balanced appropriately, can enhance language model capabilities without compromising performance, even in low-resource settings