Abstract:Fake News Video Detection (FNVD) is critical for social stability. Existing methods typically assume consistent news topic distribution between training and test phases, failing to detect fake news videos tied to emerging events and unseen topics. To bridge this gap, we introduce RADAR, the first framework that enables test-time adaptation to unseen news videos. RADAR pioneers a new retrieval-guided adaptation paradigm that leverages stable (source-close) videos from the target domain to guide robust adaptation of semantically related but unstable instances. Specifically, we propose an Entropy Selection-Based Retrieval mechanism that provides videos with stable (low-entropy), relevant references for adaptation. We also introduce a Stable Anchor-Guided Alignment module that explicitly aligns unstable instances' representations to the source domain via distribution-level matching with their stable references, mitigating severe domain discrepancies. Finally, our novel Target-Domain Aware Self-Training paradigm can generate informative pseudo-labels augmented by stable references, capturing varying and imbalanced category distributions in the target domain and enabling RADAR to adapt to the fast-changing label distributions. Extensive experiments demonstrate that RADAR achieves superior performance for test-time FNVD, enabling strong on-the-fly adaptation to unseen fake news video topics.
Abstract:Multimodal Large Language Model (MLLM) Personalization is a critical research problem that facilitates personalized dialogues with MLLMs targeting specific entities (known as personalized concepts). However, existing methods and benchmarks focus on the simple, context-agnostic visual identification and textual replacement of the personalized concept (e.g., "A yellow puppy" -> "Your puppy Mochi"), overlooking the ability to support long-context conversations. An ideal personalized MLLM assistant is capable of engaging in long-context dialogues with humans and continually improving its experience quality by learning from past dialogue histories. To bridge this gap, we propose LCMP, the first Long-Context MLLM Personalization evaluation benchmark. LCMP assesses the capability of MLLMs in perceiving variations of personalized concepts and generating contextually appropriate personalized responses that reflect these variations. As a strong baseline for LCMP, we introduce a novel training-free and state-aware framework TAME. TAME endows MLLMs with double memories to manage the temporal and persistent variations of each personalized concept in a differentiated manner. In addition, TAME incorporates a new training-free Retrieve-then-Align Augmented Generation (RA2G) paradigm. RA2G introduces an alignment step to extract the contextually fitted information from the multi-memory retrieved knowledge to the current questions, enabling better interactions for complex real-world user queries. Experiments on LCMP demonstrate that TAME achieves the best performance, showcasing remarkable and evolving interaction experiences in long-context scenarios.
Abstract:The proliferation of harmful memes on online media poses significant risks to public health and stability. Existing detection methods heavily rely on large-scale labeled data for training, which necessitates substantial manual annotation efforts and limits their adaptability to the continually evolving nature of harmful content. To address these challenges, we present ALARM, the first lAbeL-free hARmful Meme detection framework powered by Large Multimodal Model (LMM) agent self-improvement. The core innovation of ALARM lies in exploiting the expressive information from "shallow" memes to iteratively enhance its ability to tackle more complex and subtle ones. ALARM consists of a novel Confidence-based Explicit Meme Identification mechanism that isolates the explicit memes from the original dataset and assigns them pseudo-labels. Besides, a new Pairwise Learning Guided Agent Self-Improvement paradigm is introduced, where the explicit memes are reorganized into contrastive pairs (positive vs. negative) to refine a learner LMM agent. This agent autonomously derives high-level detection cues from these pairs, which in turn empower the agent itself to handle complex and challenging memes effectively. Experiments on three diverse datasets demonstrate the superior performance and strong adaptability of ALARM to newly evolved memes. Notably, our method even outperforms label-driven methods. These results highlight the potential of label-free frameworks as a scalable and promising solution for adapting to novel forms and topics of harmful memes in dynamic online environments.