Abstract:Vision-language models (VLMs) have demonstrated strong reasoning abilities in literal multimodal tasks such as visual mathematics and science question answering. However, figurative language, such as sarcasm, humor, and metaphor, remains a significant challenge, as it conveys intent and emotion through subtle incongruities between expressed and intended meanings. In multimodal settings, accompanying images can amplify or invert textual meaning, demanding models that reason across modalities and account for subjectivity. We propose a three-step framework for developing efficient multimodal reasoning models that can (i) interpret multimodal figurative language, (ii) provide transparent reasoning traces, and (iii) generalize across multiple figurative styles. Experiments across four styles show that (1) incorporating reasoning traces substantially improves multimodal figurative understanding, (2) reasoning learned in one style can transfer to others, especially between related styles like sarcasm and humor, and (3) training jointly across styles yields a generalized reasoning VLM that outperforms much larger open- and closed-source models. Our findings show that lightweight VLMs with verifiable reasoning achieve robust cross-style generalization while providing inspectable reasoning traces for multimodal tasks. The code and implementation are available at https://github.com/scheshmi/CrossStyle-MMR.
Abstract:Large Language Model (LLM) agents can increasingly automate complex reasoning through Test-Time Scaling (TTS), iterative refinement guided by reward signals. However, many real-world tasks involve multi-stage pipeline whose final outcomes lack verifiable rewards or sufficient data to train robust reward models, making judge-based refinement prone to accumulate error over stages. We propose Selective TTS, a process-based refinement framework that scales inference across different stages in multi-agent pipeline, instead of repeated refinement over time by prior work. By distributing compute across stages and pruning low-quality branches early using process-specific judges, Selective TTS mitigates the judge drift and stabilizes refinement. Grounded in the data science pipeline, we build an end-to-end multi-agent pipeline for generating visually insightful charts and report of given dataset, and design a reliable LLM-based judge model, aligned with human experts (Kendall's τ=0.55). Our proposed selective TTS then improves insight quality under a fixed compute budget, increasing mean scores from 61.64 to 65.86 while reducing variance. We hope our findings serve as the first step toward to scaling complex, open-ended tasks with unverifiable rewards, such as scientific discovery and story generation.
Abstract:Automating end-to-end data science pipeline with AI agents still stalls on two gaps: generating insightful, diverse visual evidence and assembling it into a coherent, professional report. We present A2P-Vis, a two-part, multi-agent pipeline that turns raw datasets into a high-quality data-visualization report. The Data Analyzer orchestrates profiling, proposes diverse visualization directions, generates and executes plotting code, filters low-quality figures with a legibility checker, and elicits candidate insights that are automatically scored for depth, correctness, specificity, depth and actionability. The Presenter then orders topics, composes chart-grounded narratives from the top-ranked insights, writes justified transitions, and revises the document for clarity and consistency, yielding a coherent, publication-ready report. Together, these agents convert raw data into curated materials (charts + vetted insights) and into a readable narrative without manual glue work. We claim that by coupling a quality-assured Analyzer with a narrative Presenter, A2P-Vis operationalizes co-analysis end-to-end, improving the real-world usefulness of automated data analysis for practitioners. For the complete dataset report, please see: https://www.visagent.org/api/output/f2a3486d-2c3b-4825-98d4-5af25a819f56.
Abstract:The impressive capabilities of Large Language Models (LLMs) have fueled the notion that synthetic agents can serve as substitutes for real participants in human-subject research. In an effort to evaluate the merits of this claim, social science researchers have largely focused on whether LLM-generated survey data corresponds to that of a human counterpart whom the LLM is prompted to represent. In contrast, we address a more fundamental question: Do agents maintain internal consistency, retaining similar behaviors when examined under different experimental settings? To this end, we develop a study designed to (a) reveal the agent's internal state and (b) examine agent behavior in a basic dialogue setting. This design enables us to explore a set of behavioral hypotheses to assess whether an agent's conversation behavior is consistent with what we would expect from their revealed internal state. Our findings on these hypotheses show significant internal inconsistencies in LLMs across model families and at differing model sizes. Most importantly, we find that, although agents may generate responses matching those of their human counterparts, they fail to be internally consistent, representing a critical gap in their capabilities to accurately substitute for real participants in human-subject research. Our simulation code and data are publicly accessible.