As Text-to-Image (T2I) diffusion models are increasingly used in real-world creative workflows, a principled framework for valuing contributors who provide a collection of data is essential for fair compensation and sustainable data marketplaces. While the Shapley value offers a theoretically grounded approach to attribution, it faces a dual computational bottleneck: (i) the prohibitive cost of exhaustive model retraining for each sampled subset of players (i.e., data contributors) and (ii) the combinatorial number of subsets needed to estimate marginal contributions due to contributor interactions. To this end, we propose SurrogateSHAP, a retraining-free framework that approximates the expensive retraining game through inference from a pretrained model. To further improve efficiency, we employ a gradient-boosted tree to approximate the utility function and derive Shapley values analytically from the tree-based model. We evaluate SurrogateSHAP across three diverse attribution tasks: (i) image quality for DDPM-CFG on CIFAR-20, (ii) aesthetics for Stable Diffusion on Post-Impressionist artworks, and (iii) product diversity for FLUX.1 on Fashion-Product data. Across settings, SurrogateSHAP outperforms prior methods while substantially reducing computational overhead, consistently identifying influential contributors across multiple utility metrics. Finally, we demonstrate that SurrogateSHAP effectively localizes data sources responsible for spurious correlations in clinical images, providing a scalable path toward auditing safety-critical generative models.
Direct Preference Optimization (DPO) has recently improved Text-to-Video (T2V) generation by enhancing visual fidelity and text alignment. However, current methods rely on non-differentiable preference signals from human annotations or learned reward models. This reliance makes training label-intensive, bias-prone, and easy-to-game, which often triggers reward hacking and unstable training. We propose Diffusion-DRF, a differentiable reward flow for fine-tuning video diffusion models using a frozen, off-the-shelf Vision-Language Model (VLM) as a training-free critic. Diffusion-DRF directly backpropagates VLM feedback through the diffusion denoising chain, converting logit-level responses into token-aware gradients for optimization. We propose an automated, aspect-structured prompting pipeline to obtain reliable multi-dimensional VLM feedback, while gradient checkpointing enables efficient updates through the final denoising steps. Diffusion-DRF improves video quality and semantic alignment while mitigating reward hacking and collapse -- without additional reward models or preference datasets. It is model-agnostic and readily generalizes to other diffusion-based generative tasks.
Novel object synthesis by integrating distinct textual concepts from diverse categories remains a significant challenge in Text-to-Image (T2I) generation. Existing methods often suffer from insufficient concept mixing, lack of rigorous evaluation, and suboptimal outputs-manifesting as conceptual imbalance, superficial combinations, or mere juxtapositions. To address these limitations, we propose Reinforcement Mixing Learning (RMLer), a framework that formulates cross-category concept fusion as a reinforcement learning problem: mixed features serve as states, mixing strategies as actions, and visual outcomes as rewards. Specifically, we design an MLP-policy network to predict dynamic coefficients for blending cross-category text embeddings. We further introduce visual rewards based on (1) semantic similarity and (2) compositional balance between the fused object and its constituent concepts, optimizing the policy via proximal policy optimization. At inference, a selection strategy leverages these rewards to curate the highest-quality fused objects. Extensive experiments demonstrate RMLer's superiority in synthesizing coherent, high-fidelity objects from diverse categories, outperforming existing methods. Our work provides a robust framework for generating novel visual concepts, with promising applications in film, gaming, and design.
Recent advances in multimodal large language models (MLLMs) have yielded increasingly powerful models, yet their perceptual capacities remain poorly characterized. In practice, most model families scale language component while reusing nearly identical vision encoders (e.g., Qwen2.5-VL 3B/7B/72B), which raises pivotal concerns about whether progress reflects genuine visual grounding or reliance on internet-scale textual world knowledge. Existing evaluation methods emphasize end-task accuracy, overlooking robustness, attribution fidelity, and reasoning under controlled perturbations. We present The Perceptual Observatory, a framework that characterizes MLLMs across verticals like: (i) simple vision tasks, such as face matching and text-in-vision comprehension capabilities; (ii) local-to-global understanding, encompassing image matching, grid pointing game, and attribute localization, which tests general visual grounding. Each vertical is instantiated with ground-truth datasets of faces and words, systematically perturbed through pixel-based augmentations and diffusion-based stylized illusions. The Perceptual Observatory moves beyond leaderboard accuracy to yield insights into how MLLMs preserve perceptual grounding and relational structure under perturbations, providing a principled foundation for analyzing strengths and weaknesses of current and future models.




The deployment of decision-making AI agents presents a critical challenge in maintaining alignment with human values or guidelines while operating in complex, dynamic environments. Agents trained solely to achieve their objectives may adopt harmful behavior, exposing a key trade-off between maximizing the reward function and maintaining alignment. For pre-trained agents, ensuring alignment is particularly challenging, as retraining can be a costly and slow process. This is further complicated by the diverse and potentially conflicting attributes representing the ethical values for alignment. To address these challenges, we propose a test-time alignment technique based on model-guided policy shaping. Our method allows precise control over individual behavioral attributes, generalizes across diverse reinforcement learning (RL) environments, and facilitates a principled trade-off between ethical alignment and reward maximization without requiring agent retraining. We evaluate our approach using the MACHIAVELLI benchmark, which comprises 134 text-based game environments and thousands of annotated scenarios involving ethical decisions. The RL agents are first trained to maximize the reward in their respective games. At test time, we apply policy shaping via scenario-action attribute classifiers to ensure decision alignment with ethical attributes. We compare our approach against prior training-time methods and general-purpose agents, as well as study several types of ethical violations and power-seeking behavior. Our results demonstrate that test-time policy shaping provides an effective and scalable solution for mitigating unethical behavior across diverse environments and alignment attributes.




A world model enables an intelligent agent to imagine, predict, and reason about how the world evolves in response to its actions, and accordingly to plan and strategize. While recent video generation models produce realistic visual sequences, they typically operate in the prompt-to-full-video manner without causal control, interactivity, or long-horizon consistency required for purposeful reasoning. Existing world modeling efforts, on the other hand, often focus on restricted domains (e.g., physical, game, or 3D-scene dynamics) with limited depth and controllability, and struggle to generalize across diverse environments and interaction formats. In this work, we introduce PAN, a general, interactable, and long-horizon world model that predicts future world states through high-quality video simulation conditioned on history and natural language actions. PAN employs the Generative Latent Prediction (GLP) architecture that combines an autoregressive latent dynamics backbone based on a large language model (LLM), which grounds simulation in extensive text-based knowledge and enables conditioning on language-specified actions, with a video diffusion decoder that reconstructs perceptually detailed and temporally coherent visual observations, to achieve a unification between latent space reasoning (imagination) and realizable world dynamics (reality). Trained on large-scale video-action pairs spanning diverse domains, PAN supports open-domain, action-conditioned simulation with coherent, long-term dynamics. Extensive experiments show that PAN achieves strong performance in action-conditioned world simulation, long-horizon forecasting, and simulative reasoning compared to other video generators and world models, taking a step towards general world models that enable predictive simulation of future world states for reasoning and acting.
Text-to-image (T2I) diffusion models achieve impressive photorealism by training on large-scale web data, but models inherit cultural biases and fail to depict underrepresented regions faithfully. Existing cultural benchmarks focus mainly on object-centric categories (e.g., food, attire, and architecture), overlooking the social and daily activities that more clearly reflect cultural norms. Few metrics exist for measuring cultural faithfulness. We introduce CULTIVate, a benchmark for evaluating T2I models on cross-cultural activities (e.g., greetings, dining, games, traditional dances, and cultural celebrations). CULTIVate spans 16 countries with 576 prompts and more than 19,000 images, and provides an explainable descriptor-based evaluation framework across multiple cultural dimensions, including background, attire, objects, and interactions. We propose four metrics to measure cultural alignment, hallucination, exaggerated elements, and diversity. Our findings reveal systematic disparities: models perform better for global north countries than for the global south, with distinct failure modes across T2I systems. Human studies confirm that our metrics correlate more strongly with human judgments than existing text-image metrics.
GenQuest is a generative text adventure game that leverages Large Language Models (LLMs) to facilitate second language learning through immersive, interactive storytelling. The system engages English as a Foreign Language (EFL) learners in a collaborative "choose-your-own-adventure" style narrative, dynamically generated in response to learner choices. Game mechanics such as branching decision points and story milestones are incorporated to maintain narrative coherence while allowing learner-driven plot development. Key pedagogical features include content generation tailored to each learner's proficiency level, and a vocabulary assistant that provides in-context explanations of learner-queried text strings, ranging from words and phrases to sentences. Findings from a pilot study with university EFL students in China indicate promising vocabulary gains and positive user perceptions. Also discussed are suggestions from participants regarding the narrative length and quality, and the request for multi-modal content such as illustrations.
As AI technology advances, research in playing text-based games with agents has becomeprogressively popular. In this paper, a novel approach to agent design and agent learning ispresented with the context of reinforcement learning. A model of deep learning is first applied toprocess game text and build a world model. Next, the agent is learned through a policy gradient-based deep reinforcement learning method to facilitate conversion from state value to optimal policy.The enhanced agent works better in several text-based game experiments and significantlysurpasses previous agents on game completion ratio and win rate. Our study introduces novelunderstanding and empirical ground for using reinforcement learning for text games and sets thestage for developing and optimizing reinforcement learning agents for more general domains andproblems.
Large language models (LLMs) are equipped with increasingly extended context windows recently, yet their long context understanding capabilities over long dependency tasks remain fundamentally limited and underexplored. This gap is especially significant in many real-world long-context applications that were rarely benchmarked. In this paper, we introduce LooGLE v2, a novel benchmark designed to evaluate LLMs' long context ability in real-world applications and scenarios. Our benchmark consists of automatically collected real-world long texts, ranging from 16k to 2M tokens, encompassing domains in law, finance, game and code. Accordingly, we delicately design 10 types of domain-specific long-dependency tasks and generate 1,934 QA instances with various diversity and complexity in a scalable data curation pipeline for further practical needs. We conduct a comprehensive assessment of 6 locally deployed and 4 API-based LLMs. The evaluation results show that even the best-performing model achieves only a 59.2% overall score on our benchmark. Despite the extensive context windows, popular LLMs are only capable of understanding a much shorter length of context than they claim to be, revealing significant limitations in their ability to handle real-world tasks with long dependencies and highlighting substantial room for model improvement in practical long-context understanding.