Topic:Talking Face Generation
What is Talking Face Generation? Talking face generation is the process of generating videos of a person speaking based on an audio recording of their voice.
Papers and Code
May 29, 2025
Abstract:Visual dubbing, the synchronization of facial movements with new speech, is crucial for making content accessible across different languages, enabling broader global reach. However, current methods face significant limitations. Existing approaches often generate talking faces, hindering seamless integration into original scenes, or employ inpainting techniques that discard vital visual information like partial occlusions and lighting variations. This work introduces EdiDub, a novel framework that reformulates visual dubbing as a content-aware editing task. EdiDub preserves the original video context by utilizing a specialized conditioning scheme to ensure faithful and accurate modifications rather than mere copying. On multiple benchmarks, including a challenging occluded-lip dataset, EdiDub significantly improves identity preservation and synchronization. Human evaluations further confirm its superiority, achieving higher synchronization and visual naturalness scores compared to the leading methods. These results demonstrate that our content-aware editing approach outperforms traditional generation or inpainting, particularly in maintaining complex visual elements while ensuring accurate lip synchronization.
Via

May 30, 2025
Abstract:The rapid advancement of talking-head deepfake generation fueled by advanced generative models has elevated the realism of synthetic videos to a level that poses substantial risks in domains such as media, politics, and finance. However, current benchmarks for deepfake talking-head detection fail to reflect this progress, relying on outdated generators and offering limited insight into model robustness and generalization. We introduce TalkingHeadBench, a comprehensive multi-model multi-generator benchmark and curated dataset designed to evaluate the performance of state-of-the-art detectors on the most advanced generators. Our dataset includes deepfakes synthesized by leading academic and commercial models and features carefully constructed protocols to assess generalization under distribution shifts in identity and generator characteristics. We benchmark a diverse set of existing detection methods, including CNNs, vision transformers, and temporal models, and analyze their robustness and generalization capabilities. In addition, we provide error analysis using Grad-CAM visualizations to expose common failure modes and detector biases. TalkingHeadBench is hosted on https://huggingface.co/datasets/luchaoqi/TalkingHeadBench with open access to all data splits and protocols. Our benchmark aims to accelerate research towards more robust and generalizable detection models in the face of rapidly evolving generative techniques.
Via

May 28, 2025
Abstract:Lip-to-speech (L2S) synthesis, which reconstructs speech from visual cues, faces challenges in accuracy and naturalness due to limited supervision in capturing linguistic content, accents, and prosody. In this paper, we propose RESOUND, a novel L2S system that generates intelligible and expressive speech from silent talking face videos. Leveraging source-filter theory, our method involves two components: an acoustic path to predict prosody and a semantic path to extract linguistic features. This separation simplifies learning, allowing independent optimization of each representation. Additionally, we enhance performance by integrating speech units, a proven unsupervised speech representation technique, into waveform generation alongside mel-spectrograms. This allows RESOUND to synthesize prosodic speech while preserving content and speaker identity. Experiments conducted on two standard L2S benchmarks confirm the effectiveness of the proposed method across various metrics.
* accepted in Interspeech 2025
Via

May 28, 2025
Abstract:Audio-driven human animation methods, such as talking head and talking body generation, have made remarkable progress in generating synchronized facial movements and appealing visual quality videos. However, existing methods primarily focus on single human animation and struggle with multi-stream audio inputs, facing incorrect binding problems between audio and persons. Additionally, they exhibit limitations in instruction-following capabilities. To solve this problem, in this paper, we propose a novel task: Multi-Person Conversational Video Generation, and introduce a new framework, MultiTalk, to address the challenges during multi-person generation. Specifically, for audio injection, we investigate several schemes and propose the Label Rotary Position Embedding (L-RoPE) method to resolve the audio and person binding problem. Furthermore, during training, we observe that partial parameter training and multi-task training are crucial for preserving the instruction-following ability of the base model. MultiTalk achieves superior performance compared to other methods on several datasets, including talking head, talking body, and multi-person datasets, demonstrating the powerful generation capabilities of our approach.
Via

May 26, 2025
Abstract:In face-to-face conversations, individuals need to switch between speaking and listening roles seamlessly. Existing 3D talking head generation models focus solely on speaking or listening, neglecting the natural dynamics of interactive conversation, which leads to unnatural interactions and awkward transitions. To address this issue, we propose a new task -- multi-round dual-speaker interaction for 3D talking head generation -- which requires models to handle and generate both speaking and listening behaviors in continuous conversation. To solve this task, we introduce DualTalk, a novel unified framework that integrates the dynamic behaviors of speakers and listeners to simulate realistic and coherent dialogue interactions. This framework not only synthesizes lifelike talking heads when speaking but also generates continuous and vivid non-verbal feedback when listening, effectively capturing the interplay between the roles. We also create a new dataset featuring 50 hours of multi-round conversations with over 1,000 characters, where participants continuously switch between speaking and listening roles. Extensive experiments demonstrate that our method significantly enhances the naturalness and expressiveness of 3D talking heads in dual-speaker conversations. We recommend watching the supplementary video: https://ziqiaopeng.github.io/dualtalk.
* Accepted by CVPR 2025
Via

Mar 24, 2025
Abstract:Recent advances in talking face generation have significantly improved facial animation synthesis. However, existing approaches face fundamental limitations: 3DMM-based methods maintain temporal consistency but lack fine-grained regional control, while Stable Diffusion-based methods enable spatial manipulation but suffer from temporal inconsistencies. The integration of these approaches is hindered by incompatible control mechanisms and semantic entanglement of facial representations. This paper presents DisentTalk, introducing a data-driven semantic disentanglement framework that decomposes 3DMM expression parameters into meaningful subspaces for fine-grained facial control. Building upon this disentangled representation, we develop a hierarchical latent diffusion architecture that operates in 3DMM parameter space, integrating region-aware attention mechanisms to ensure both spatial precision and temporal coherence. To address the scarcity of high-quality Chinese training data, we introduce CHDTF, a Chinese high-definition talking face dataset. Extensive experiments show superior performance over existing methods across multiple metrics, including lip synchronization, expression quality, and temporal consistency. Project Page: https://kangweiiliu.github.io/DisentTalk.
* Accpeted by ICME 2025
Via

Mar 20, 2025
Abstract:Recent advancements in audio-driven talking face generation have made great progress in lip synchronization. However, current methods often lack sufficient control over facial animation such as speaking style and emotional expression, resulting in uniform outputs. In this paper, we focus on improving two key factors: lip-audio alignment and emotion control, to enhance the diversity and user-friendliness of talking videos. Lip-audio alignment control focuses on elements like speaking style and the scale of lip movements, whereas emotion control is centered on generating realistic emotional expressions, allowing for modifications in multiple attributes such as intensity. To achieve precise control of facial animation, we propose a novel framework, PC-Talk, which enables lip-audio alignment and emotion control through implicit keypoint deformations. First, our lip-audio alignment control module facilitates precise editing of speaking styles at the word level and adjusts lip movement scales to simulate varying vocal loudness levels, maintaining lip synchronization with the audio. Second, our emotion control module generates vivid emotional facial features with pure emotional deformation. This module also enables the fine modification of intensity and the combination of multiple emotions across different facial regions. Our method demonstrates outstanding control capabilities and achieves state-of-the-art performance on both HDTF and MEAD datasets in extensive experiments.
Via

Mar 20, 2025
Abstract:Precise audio-visual synchronization in speech videos is crucial for content quality and viewer comprehension. Existing methods have made significant strides in addressing this challenge through rule-based approaches and end-to-end learning techniques. However, these methods often rely on limited audio-visual representations and suboptimal learning strategies, potentially constraining their effectiveness in more complex scenarios. To address these limitations, we present UniSync, a novel approach for evaluating audio-visual synchronization using embedding similarities. UniSync offers broad compatibility with various audio representations (e.g., Mel spectrograms, HuBERT) and visual representations (e.g., RGB images, face parsing maps, facial landmarks, 3DMM), effectively handling their significant dimensional differences. We enhance the contrastive learning framework with a margin-based loss component and cross-speaker unsynchronized pairs, improving discriminative capabilities. UniSync outperforms existing methods on standard datasets and demonstrates versatility across diverse audio-visual representations. Its integration into talking face generation frameworks enhances synchronization quality in both natural and AI-generated content.
* 7 pages, 3 figures, accepted by ICME 2025
Via

Mar 27, 2025
Abstract:Recent advancements in speech-driven 3D talking head generation have made significant progress in lip synchronization. However, existing models still struggle to capture the perceptual alignment between varying speech characteristics and corresponding lip movements. In this work, we claim that three criteria -- Temporal Synchronization, Lip Readability, and Expressiveness -- are crucial for achieving perceptually accurate lip movements. Motivated by our hypothesis that a desirable representation space exists to meet these three criteria, we introduce a speech-mesh synchronized representation that captures intricate correspondences between speech signals and 3D face meshes. We found that our learned representation exhibits desirable characteristics, and we plug it into existing models as a perceptual loss to better align lip movements to the given speech. In addition, we utilize this representation as a perceptual metric and introduce two other physically grounded lip synchronization metrics to assess how well the generated 3D talking heads align with these three criteria. Experiments show that training 3D talking head generation models with our perceptual loss significantly improve all three aspects of perceptually accurate lip synchronization. Codes and datasets are available at https://perceptual-3d-talking-head.github.io/.
* CVPR 2025
Via

Mar 27, 2025
Abstract:Real-time interactive video-chat portraits have been increasingly recognized as the future trend, particularly due to the remarkable progress made in text and voice chat technologies. However, existing methods primarily focus on real-time generation of head movements, but struggle to produce synchronized body motions that match these head actions. Additionally, achieving fine-grained control over the speaking style and nuances of facial expressions remains a challenge. To address these limitations, we introduce a novel framework for stylized real-time portrait video generation, enabling expressive and flexible video chat that extends from talking head to upper-body interaction. Our approach consists of the following two stages. The first stage involves efficient hierarchical motion diffusion models, that take both explicit and implicit motion representations into account based on audio inputs, which can generate a diverse range of facial expressions with stylistic control and synchronization between head and body movements. The second stage aims to generate portrait video featuring upper-body movements, including hand gestures. We inject explicit hand control signals into the generator to produce more detailed hand movements, and further perform face refinement to enhance the overall realism and expressiveness of the portrait video. Additionally, our approach supports efficient and continuous generation of upper-body portrait video in maximum 512 * 768 resolution at up to 30fps on 4090 GPU, supporting interactive video-chat in real-time. Experimental results demonstrate the capability of our approach to produce portrait videos with rich expressiveness and natural upper-body movements.
Via
