What is Super Resolution? Super-resolution is a task in computer vision that involves increasing the resolution of an image or video by generating missing high-frequency details from low-resolution input. The goal is to produce an output image with a higher resolution than the input image, while preserving the original content and structure.
Papers and Code
Sep 11, 2025
Abstract:As an influential information fusion and low-level vision technique, image fusion integrates complementary information from source images to yield an informative fused image. A few attempts have been made in recent years to jointly realize image fusion and super-resolution. However, in real-world applications such as military reconnaissance and long-range detection missions, the target and background structures in multimodal images are easily corrupted, with low resolution and weak semantic information, which leads to suboptimal results in current fusion techniques. In response, we propose FS-Diff, a semantic guidance and clarity-aware joint image fusion and super-resolution method. FS-Diff unifies image fusion and super-resolution as a conditional generation problem. It leverages semantic guidance from the proposed clarity sensing mechanism for adaptive low-resolution perception and cross-modal feature extraction. Specifically, we initialize the desired fused result as pure Gaussian noise and introduce the bidirectional feature Mamba to extract the global features of the multimodal images. Moreover, utilizing the source images and semantics as conditions, we implement a random iterative denoising process via a modified U-Net network. This network istrained for denoising at multiple noise levels to produce high-resolution fusion results with cross-modal features and abundant semantic information. We also construct a powerful aerial view multiscene (AVMS) benchmark covering 600 pairs of images. Extensive joint image fusion and super-resolution experiments on six public and our AVMS datasets demonstrated that FS-Diff outperforms the state-of-the-art methods at multiple magnifications and can recover richer details and semantics in the fused images. The code is available at https://github.com/XylonXu01/FS-Diff.
* Information Fusion, 2025, 121: 103146
Via

Sep 10, 2025
Abstract:State space models (SSMs), particularly Mamba, have shown promise in NLP tasks and are increasingly applied to vision tasks. However, most Mamba-based vision models focus on network architecture and scan paths, with little attention to the SSM module. In order to explore the potential of SSMs, we modified the calculation process of SSM without increasing the number of parameters to improve the performance on lightweight super-resolution tasks. In this paper, we introduce the First-order State Space Model (FSSM) to improve the original Mamba module, enhancing performance by incorporating token correlations. We apply a first-order hold condition in SSMs, derive the new discretized form, and analyzed cumulative error. Extensive experimental results demonstrate that FSSM improves the performance of MambaIR on five benchmark datasets without additionally increasing the number of parameters, and surpasses current lightweight SR methods, achieving state-of-the-art results.
* ICASSP 2025 - 2025 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP)
* Accept by ICASSP 2025 (Oral)
Via

Sep 10, 2025
Abstract:Neural operators are promising surrogates for dynamical systems but when trained with standard L2 losses they tend to oversmooth fine-scale turbulent structures. Here, we show that combining operator learning with generative modeling overcomes this limitation. We consider three practical turbulent-flow challenges where conventional neural operators fail: spatio-temporal super-resolution, forecasting, and sparse flow reconstruction. For Schlieren jet super-resolution, an adversarially trained neural operator (adv-NO) reduces the energy-spectrum error by 15x while preserving sharp gradients at neural operator-like inference cost. For 3D homogeneous isotropic turbulence, adv-NO trained on only 160 timesteps from a single trajectory forecasts accurately for five eddy-turnover times and offers 114x wall-clock speed-up at inference than the baseline diffusion-based forecasters, enabling near-real-time rollouts. For reconstructing cylinder wake flows from highly sparse Particle Tracking Velocimetry-like inputs, a conditional generative model infers full 3D velocity and pressure fields with correct phase alignment and statistics. These advances enable accurate reconstruction and forecasting at low compute cost, bringing near-real-time analysis and control within reach in experimental and computational fluid mechanics. See our project page: https://vivekoommen.github.io/Gen4Turb/
Via

Sep 09, 2025
Abstract:Acquiring images in high resolution is often a challenging task. Especially in the medical sector, image quality has to be balanced with acquisition time and patient comfort. To strike a compromise between scan time and quality for Magnetic Resonance (MR) imaging, two anisotropic scans with different low-resolution (LR) orientations can be acquired. Typically, LR scans are analyzed individually by radiologists, which is time consuming and can lead to inaccurate interpretation. To tackle this, we propose a novel approach for fusing two orthogonal anisotropic LR MR images to reconstruct anatomical details in a unified representation. Our multi-view neural network is trained in a self-supervised manner, without requiring corresponding high-resolution (HR) data. To optimize the model, we introduce a sparse coordinate-based loss, enabling the integration of LR images with arbitrary scaling. We evaluate our method on MR images from two independent cohorts. Our results demonstrate comparable or even improved super-resolution (SR) performance compared to state-of-the-art (SOTA) self-supervised SR methods for different upsampling scales. By combining a patient-agnostic offline and a patient-specific online phase, we achieve a substantial speed-up of up to ten times for patient-specific reconstruction while achieving similar or better SR quality. Code is available at https://github.com/MajaSchle/tripleSR.
* 11 pages, 2 figures
Via

Sep 08, 2025
Abstract:This paper introduces BIR-Adapter, a low-complexity blind image restoration adapter for diffusion models. The BIR-Adapter enables the utilization of the prior of pre-trained large-scale diffusion models on blind image restoration without training any auxiliary feature extractor. We take advantage of the robustness of pretrained models. We extract features from degraded images via the model itself and extend the self-attention mechanism with these degraded features. We introduce a sampling guidance mechanism to reduce hallucinations. We perform experiments on synthetic and real-world degradations and demonstrate that BIR-Adapter achieves competitive or better performance compared to state-of-the-art methods while having significantly lower complexity. Additionally, its adapter-based design enables integration into other diffusion models, enabling broader applications in image restoration tasks. We showcase this by extending a super-resolution-only model to perform better under additional unknown degradations.
* 20 pages, 14 figures
Via

Sep 05, 2025
Abstract:Semantic communication (SemCom), as a typical paradigm of deep integration between artificial intelligence (AI) and communication technology, significantly improves communication efficiency and resource utilization efficiency. However, the security issues of SemCom are becoming increasingly prominent. Semantic features transmitted in plaintext over physical channels are easily intercepted by eavesdroppers. To address this issue, this paper proposes Encrypted Semantic Super-Resolution Enhanced Communication (SREC) to secure SemCom. SREC uses the modulo-256 encryption method to encrypt semantic features, and employs super-resolution reconstruction method to improve the reconstruction quality of images. The simulation results show that in the additive Gaussian white noise (AWGN) channel, when different modulation methods are used, SREC can not only stably guarantee security, but also achieve better transmission performance under low signal-to-noise ratio (SNR) conditions.
* 7 pages, 6 figures, conference
Via

Sep 05, 2025
Abstract:Recently, Mamba-based methods, with its advantage in long-range information modeling and linear complexity, have shown great potential in optimizing both computational cost and performance of light field image super-resolution (LFSR). However, current multi-directional scanning strategies lead to inefficient and redundant feature extraction when applied to complex LF data. To overcome this challenge, we propose a Subspace Simple Scanning (Sub-SS) strategy, based on which we design the Subspace Simple Mamba Block (SSMB) to achieve more efficient and precise feature extraction. Furthermore, we propose a dual-stage modeling strategy to address the limitation of state space in preserving spatial-angular and disparity information, thereby enabling a more comprehensive exploration of non-local spatial-angular correlations. Specifically, in stage I, we introduce the Spatial-Angular Residual Subspace Mamba Block (SA-RSMB) for shallow spatial-angular feature extraction; in stage II, we use a dual-branch parallel structure combining the Epipolar Plane Mamba Block (EPMB) and Epipolar Plane Transformer Block (EPTB) for deep epipolar feature refinement. Building upon meticulously designed modules and strategies, we introduce a hybrid Mamba-Transformer framework, termed LFMT. LFMT integrates the strengths of Mamba and Transformer models for LFSR, enabling comprehensive information exploration across spatial, angular, and epipolar-plane domains. Experimental results demonstrate that LFMT significantly outperforms current state-of-the-art methods in LFSR, achieving substantial improvements in performance while maintaining low computational complexity on both real-word and synthetic LF datasets.
Via

Sep 04, 2025
Abstract:Speech super-resolution (SR) reconstructs high-frequency content from low-resolution speech signals. Existing systems often suffer from representation mismatch in two-stage mel-vocoder pipelines and from over-smoothing of hallucinated high-band content by CNN-only generators. Diffusion and flow models are computationally expensive, and their robustness across domains and sampling rates remains limited. We propose SwinSRGAN, an end-to-end framework operating on Modified Discrete Cosine Transform (MDCT) magnitudes. It is a Swin Transformer-based U-Net that captures long-range spectro-temporal dependencies with a hybrid adversarial scheme combines time-domain MPD/MSD discriminators with a multi-band MDCT discriminator specialized for the high-frequency band. We employs a sparse-aware regularizer on arcsinh-compressed MDCT to better preserve transient components. The system upsamples inputs at various sampling rates to 48 kHz in a single pass and operates in real time. On standard benchmarks, SwinSRGAN reduces objective error and improves ABX preference scores. In zero-shot tests on HiFi-TTS without fine-tuning, it outperforms NVSR and mdctGAN, demonstrating strong generalization across datasets
* 5 pages
Via

Sep 04, 2025
Abstract:Uncertainty quantification for neural operators remains an open problem in the infinite-dimensional setting due to the lack of finite-sample coverage guarantees over functional outputs. While conformal prediction offers finite-sample guarantees in finite-dimensional spaces, it does not directly extend to function-valued outputs. Existing approaches (Gaussian processes, Bayesian neural networks, and quantile-based operators) require strong distributional assumptions or yield conservative coverage. This work extends split conformal prediction to function spaces following a two step method. We first establish finite-sample coverage guarantees in a finite-dimensional space using a discretization map in the output function space. Then these guarantees are lifted to the function-space by considering the asymptotic convergence as the discretization is refined. To characterize the effect of resolution, we decompose the conformal radius into discretization, calibration, and misspecification components. This decomposition motivates a regression-based correction to transfer calibration across resolutions. Additionally, we propose two diagnostic metrics (conformal ensemble score and internal agreement) to quantify forecast degradation in autoregressive settings. Empirical results show that our method maintains calibrated coverage with less variation under resolution shifts and achieves better coverage in super-resolution tasks.
* 7 pages, 4 figures, conference
Via

Aug 27, 2025
Abstract:Transformers have demonstrated promising performance in computer vision tasks, including image super-resolution (SR). The quadratic computational complexity of window self-attention mechanisms in many transformer-based SR methods forces the use of small, fixed windows, limiting the receptive field. In this paper, we propose a new approach by embedding the wavelet transform within a hierarchical transformer framework, called (WaveHiT-SR). First, using adaptive hierarchical windows instead of static small windows allows to capture features across different levels and greatly improve the ability to model long-range dependencies. Secondly, the proposed model utilizes wavelet transforms to decompose images into multiple frequency subbands, allowing the network to focus on both global and local features while preserving structural details. By progressively reconstructing high-resolution images through hierarchical processing, the network reduces computational complexity without sacrificing performance. The multi-level decomposition strategy enables the network to capture fine-grained information in lowfrequency components while enhancing high-frequency textures. Through extensive experimentation, we confirm the effectiveness and efficiency of our WaveHiT-SR. Our refined versions of SwinIR-Light, SwinIR-NG, and SRFormer-Light deliver cutting-edge SR results, achieving higher efficiency with fewer parameters, lower FLOPs, and faster speeds.
* 10 pages, 5 figures
Via
