What is Super Resolution? Super-resolution is a task in computer vision that involves increasing the resolution of an image or video by generating missing high-frequency details from low-resolution input. The goal is to produce an output image with a higher resolution than the input image, while preserving the original content and structure.
Papers and Code
Jun 25, 2025
Abstract:Super-resolution (SR) is an ill-posed inverse problem with many feasible solutions consistent with a given low-resolution image. On one hand, regressive SR models aim to balance fidelity and perceptual quality to yield a single solution, but this trade-off often introduces artifacts that create ambiguity in information-critical applications such as recognizing digits or letters. On the other hand, diffusion models generate a diverse set of SR images, but selecting the most trustworthy solution from this set remains a challenge. This paper introduces a robust, automated framework for identifying the most trustworthy SR sample from a diffusion-generated set by leveraging the semantic reasoning capabilities of vision-language models (VLMs). Specifically, VLMs such as BLIP-2, GPT-4o, and their variants are prompted with structured queries to assess semantic correctness, visual quality, and artifact presence. The top-ranked SR candidates are then ensembled to yield a single trustworthy output in a cost-effective manner. To rigorously assess the validity of VLM-selected samples, we propose a novel Trustworthiness Score (TWS) a hybrid metric that quantifies SR reliability based on three complementary components: semantic similarity via CLIP embeddings, structural integrity using SSIM on edge maps, and artifact sensitivity through multi-level wavelet decomposition. We empirically show that TWS correlates strongly with human preference in both ambiguous and natural images, and that VLM-guided selections consistently yield high TWS values. Compared to conventional metrics like PSNR, LPIPS, which fail to reflect information fidelity, our approach offers a principled, scalable, and generalizable solution for navigating the uncertainty of the diffusion SR space. By aligning outputs with human expectations and semantic correctness, this work sets a new benchmark for trustworthiness in generative SR.
* 14 pages, 9 figures, 5 tables, accepted to IEEE Transactions on
Circuits and Systems for Video Technology
Via

Jun 24, 2025
Abstract:Latent diffusion models have emerged as a leading paradigm for efficient video generation. However, as user expectations shift toward higher-resolution outputs, relying solely on latent computation becomes inadequate. A promising approach involves decoupling the process into two stages: semantic content generation and detail synthesis. The former employs a computationally intensive base model at lower resolutions, while the latter leverages a lightweight cascaded video super-resolution (VSR) model to achieve high-resolution output. In this work, we focus on studying key design principles for latter cascaded VSR models, which are underexplored currently. First, we propose two degradation strategies to generate training pairs that better mimic the output characteristics of the base model, ensuring alignment between the VSR model and its upstream generator. Second, we provide critical insights into VSR model behavior through systematic analysis of (1) timestep sampling strategies, (2) noise augmentation effects on low-resolution (LR) inputs. These findings directly inform our architectural and training innovations. Finally, we introduce interleaving temporal unit and sparse local attention to achieve efficient training and inference, drastically reducing computational overhead. Extensive experiments demonstrate the superiority of our framework over existing methods, with ablation studies confirming the efficacy of each design choice. Our work establishes a simple yet effective baseline for cascaded video super-resolution generation, offering practical insights to guide future advancements in efficient cascaded synthesis systems.
* Project webpage available at https://simplegvr.github.io/
Via

Jun 24, 2025
Abstract:This paper introduces ClearerVoice-Studio, an open-source, AI-powered speech processing toolkit designed to bridge cutting-edge research and practical application. Unlike broad platforms like SpeechBrain and ESPnet, ClearerVoice-Studio focuses on interconnected speech tasks of speech enhancement, separation, super-resolution, and multimodal target speaker extraction. A key advantage is its state-of-the-art pretrained models, including FRCRN with 3 million uses and MossFormer with 2.5 million uses, optimized for real-world scenarios. It also offers model optimization tools, multi-format audio support, the SpeechScore evaluation toolkit, and user-friendly interfaces, catering to researchers, developers, and end-users. Its rapid adoption attracting 3000 GitHub stars and 239 forks highlights its academic and industrial impact. This paper details ClearerVoice-Studio's capabilities, architectures, training strategies, benchmarks, community impact, and future plan. Source code is available at https://github.com/modelscope/ClearerVoice-Studio.
* accepted by Interspeech 2025, 5 pages, 5 tables
Via

Jun 18, 2025
Abstract:It is a challenging problem to reproduce rich spatial details while maintaining temporal consistency in real-world video super-resolution (Real-VSR), especially when we leverage pre-trained generative models such as stable diffusion (SD) for realistic details synthesis. Existing SD-based Real-VSR methods often compromise spatial details for temporal coherence, resulting in suboptimal visual quality. We argue that the key lies in how to effectively extract the degradation-robust temporal consistency priors from the low-quality (LQ) input video and enhance the video details while maintaining the extracted consistency priors. To achieve this, we propose a Dual LoRA Learning (DLoRAL) paradigm to train an effective SD-based one-step diffusion model, achieving realistic frame details and temporal consistency simultaneously. Specifically, we introduce a Cross-Frame Retrieval (CFR) module to aggregate complementary information across frames, and train a Consistency-LoRA (C-LoRA) to learn robust temporal representations from degraded inputs. After consistency learning, we fix the CFR and C-LoRA modules and train a Detail-LoRA (D-LoRA) to enhance spatial details while aligning with the temporal space defined by C-LoRA to keep temporal coherence. The two phases alternate iteratively for optimization, collaboratively delivering consistent and detail-rich outputs. During inference, the two LoRA branches are merged into the SD model, allowing efficient and high-quality video restoration in a single diffusion step. Experiments show that DLoRAL achieves strong performance in both accuracy and speed. Code and models are available at https://github.com/yjsunnn/DLoRAL.
Via

Jun 17, 2025
Abstract:This paper presents a general-purpose video super-resolution (VSR) method, dubbed VSR-HE, specifically designed to enhance the perceptual quality of compressed content. Targeting scenarios characterized by heavy compression, the method upscales low-resolution videos by a ratio of four, from 180p to 720p or from 270p to 1080p. VSR-HE adopts hierarchical encoding transformer blocks and has been sophisticatedly optimized to eliminate a wide range of compression artifacts commonly introduced by H.265/HEVC encoding across various quantization parameter (QP) levels. To ensure robustness and generalization, the model is trained and evaluated under diverse compression settings, allowing it to effectively restore fine-grained details and preserve visual fidelity. The proposed VSR-HE has been officially submitted to the ICME 2025 Grand Challenge on VSR for Video Conferencing (Team BVI-VSR), under both the Track 1 (General-Purpose Real-World Video Content) and Track 2 (Talking Head Videos).
Via

Jun 17, 2025
Abstract:Face super-resolution (FSR) under limited computational costs remains an open problem. Existing approaches typically treat all facial pixels equally, resulting in suboptimal allocation of computational resources and degraded FSR performance. CNN is relatively sensitive to high-frequency facial features, such as component contours and facial outlines. Meanwhile, Mamba excels at capturing low-frequency features like facial color and fine-grained texture, and does so with lower complexity than Transformers. Motivated by these observations, we propose FADPNet, a Frequency-Aware Dual-Path Network that decomposes facial features into low- and high-frequency components and processes them via dedicated branches. For low-frequency regions, we introduce a Mamba-based Low-Frequency Enhancement Block (LFEB), which combines state-space attention with squeeze-and-excitation operations to extract low-frequency global interactions and emphasize informative channels. For high-frequency regions, we design a CNN-based Deep Position-Aware Attention (DPA) module to enhance spatially-dependent structural details, complemented by a lightweight High-Frequency Refinement (HFR) module that further refines frequency-specific representations. Through the above designs, our method achieves an excellent balance between FSR quality and model efficiency, outperforming existing approaches.
* 12 pages, 11 figures, 6 tales
Via

Jun 16, 2025
Abstract:Printed Circuit Boards (PCBs) are critical components in modern electronics, which require stringent quality control to ensure proper functionality. However, the detection of defects in small-scale PCBs images poses significant challenges as a result of the low resolution of the captured images, leading to potential confusion between defects and noise. To overcome these challenges, this paper proposes a novel framework, named ESRPCB (edgeguided super-resolution for PCBs defect detection), which combines edgeguided super-resolution with ensemble learning to enhance PCBs defect detection. The framework leverages the edge information to guide the EDSR (Enhanced Deep Super-Resolution) model with a novel ResCat (Residual Concatenation) structure, enabling it to reconstruct high-resolution images from small PCBs inputs. By incorporating edge features, the super-resolution process preserves critical structural details, ensuring that tiny defects remain distinguishable in the enhanced image. Following this, a multi-modal defect detection model employs ensemble learning to analyze the super-resolved
* Published in Engineering Applications of Artificial Intelligence
Via

Jun 17, 2025
Abstract:This work addresses image restoration tasks through the lens of inverse problems using unpaired datasets. In contrast to traditional approaches -- which typically assume full knowledge of the forward model or access to paired degraded and ground-truth images -- the proposed method operates under minimal assumptions and relies only on small, unpaired datasets. This makes it particularly well-suited for real-world scenarios, where the forward model is often unknown or misspecified, and collecting paired data is costly or infeasible. The method leverages conditional flow matching to model the distribution of degraded observations, while simultaneously learning the forward model via a distribution-matching loss that arises naturally from the framework. Empirically, it outperforms both single-image blind and unsupervised approaches on deblurring and non-uniform point spread function (PSF) calibration tasks. It also matches state-of-the-art performance on blind super-resolution. We also showcase the effectiveness of our method with a proof of concept for lens calibration: a real-world application traditionally requiring time-consuming experiments and specialized equipment. In contrast, our approach achieves this with minimal data acquisition effort.
Via

Jun 17, 2025
Abstract:Image restoration faces challenges including ineffective feature fusion, computational bottlenecks and inefficient diffusion processes. To address these, we propose DiffRWKVIR, a novel framework unifying Test-Time Training (TTT) with efficient diffusion. Our approach introduces three key innovations: (1) Omni-Scale 2D State Evolution extends RWKV's location-dependent parameterization to hierarchical multi-directional 2D scanning, enabling global contextual awareness with linear complexity O(L); (2) Chunk-Optimized Flash Processing accelerates intra-chunk parallelism by 3.2x via contiguous chunk processing (O(LCd) complexity), reducing sequential dependencies and computational overhead; (3) Prior-Guided Efficient Diffusion extracts a compact Image Prior Representation (IPR) in only 5-20 steps, proving 45% faster training/inference than DiffIR while solving computational inefficiency in denoising. Evaluated across super-resolution and inpainting benchmarks (Set5, Set14, BSD100, Urban100, Places365), DiffRWKVIR outperforms SwinIR, HAT, and MambaIR/v2 in PSNR, SSIM, LPIPS, and efficiency metrics. Our method establishes a new paradigm for adaptive, high-efficiency image restoration with optimized hardware utilization.
* Submitted to The 8th Chinese Conference on Pattern Recognition and
Computer Vision (2025). Contact to nomodeset@qq.com. Source code will open in
4 months
Via

Jun 16, 2025
Abstract:Sensing emerges as a critical challenge in 6G networks, which require simultaneous communication and target sensing capabilities. State-of-the-art super-resolution techniques for the direction of arrival (DoA) estimation encounter significant performance limitations when the number of targets exceeds antenna array dimensions. This paper introduces a novel sensing parameter estimation algorithm for orthogonal frequency-division multiplexing (OFDM) multiple-input multiple-output (MIMO) radar systems. The proposed approach implements a strategic two-stage methodology: first, discriminating targets through delay and Doppler domain filtering to reduce the number of effective targets for super-resolution DoA estimation, and second, introducing a fusion technique to mitigate sidelobe interferences. The algorithm enables robust DoA estimation, particularly in high-density target environments with limited-size antenna arrays. Numerical simulations validate the superior performance of the proposed method compared to conventional DoA estimation approaches.
* The paper was presented at IEEE ICC2025
Via
