What is Super Resolution? Super-resolution is a task in computer vision that involves increasing the resolution of an image or video by generating missing high-frequency details from low-resolution input. The goal is to produce an output image with a higher resolution than the input image, while preserving the original content and structure.
Papers and Code
May 09, 2025
Abstract:Magnetic Resonance Imaging (MRI) is critical for clinical diagnostics but is often limited by long acquisition times and low signal-to-noise ratios, especially in modalities like diffusion and functional MRI. The multi-contrast nature of MRI presents a valuable opportunity for cross-modal enhancement, where high-resolution (HR) modalities can serve as references to boost the quality of their low-resolution (LR) counterparts-motivating the development of Multi-Contrast Super-Resolution (MCSR) techniques. Prior work has shown that leveraging complementary contrasts can improve SR performance; however, effective feature extraction and fusion across modalities with varying resolutions remains a major challenge. Moreover, existing MCSR methods often assume fixed resolution settings and all require large, perfectly paired training datasets-conditions rarely met in real-world clinical environments. To address these challenges, we propose a novel Modular Multi-Contrast Super-Resolution (MCSR) framework that eliminates the need for paired training data and supports arbitrary upscaling. Our method decouples the MCSR task into two stages: (1) Unpaired Cross-Modal Synthesis (U-CMS), which translates a high-resolution reference modality into a synthesized version of the target contrast, and (2) Unsupervised Super-Resolution (U-SR), which reconstructs the final output using implicit neural representations (INRs) conditioned on spatial coordinates. This design enables scale-agnostic and anatomically faithful reconstruction by bridging un-paired cross-modal synthesis with unsupervised resolution enhancement. Experiments show that our method achieves superior performance at 4x and 8x upscaling, with improved fidelity and anatomical consistency over existing baselines. Our framework demonstrates strong potential for scalable, subject-specific, and data-efficient MCSR in real-world clinical settings.
Via

May 08, 2025
Abstract:Utilizing pre-trained Text-to-Image (T2I) diffusion models to guide Blind Super-Resolution (BSR) has become a predominant approach in the field. While T2I models have traditionally relied on U-Net architectures, recent advancements have demonstrated that Diffusion Transformers (DiT) achieve significantly higher performance in this domain. In this work, we introduce Enhancing Anything Model (EAM), a novel BSR method that leverages DiT and outperforms previous U-Net-based approaches. We introduce a novel block, $\Psi$-DiT, which effectively guides the DiT to enhance image restoration. This block employs a low-resolution latent as a separable flow injection control, forming a triple-flow architecture that effectively leverages the prior knowledge embedded in the pre-trained DiT. To fully exploit the prior guidance capabilities of T2I models and enhance their generalization in BSR, we introduce a progressive Masked Image Modeling strategy, which also reduces training costs. Additionally, we propose a subject-aware prompt generation strategy that employs a robust multi-modal model in an in-context learning framework. This strategy automatically identifies key image areas, provides detailed descriptions, and optimizes the utilization of T2I diffusion priors. Our experiments demonstrate that EAM achieves state-of-the-art results across multiple datasets, outperforming existing methods in both quantitative metrics and visual quality.
Via

May 08, 2025
Abstract:We propose a novel joint framework by integrating super-resolution and segmentation, called JointSeg, which enables the generation of 1-meter ISA maps directly from freely available Sentinel-2 imagery. JointSeg was trained on multimodal cross-resolution inputs, offering a scalable and affordable alternative to traditional approaches. This synergistic design enables gradual resolution enhancement from 10m to 1m while preserving fine-grained spatial textures, and ensures high classification fidelity through effective cross-scale feature fusion. This method has been successfully applied to the Yangtze River Economic Belt (YREB), a region characterized by complex urban-rural patterns and diverse topography. As a result, a comprehensive ISA mapping product for 2021, referred to as ISA-1, was generated, covering an area of over 2.2 million square kilometers. Quantitative comparisons against the 10m ESA WorldCover and other benchmark products reveal that ISA-1 achieves an F1-score of 85.71%, outperforming bilinear-interpolation-based segmentation by 9.5%, and surpassing other ISA datasets by 21.43%-61.07%. In densely urbanized areas (e.g., Suzhou, Nanjing), ISA-1 reduces ISA overestimation through improved discrimination of green spaces and water bodies. Conversely, in mountainous regions (e.g., Ganzi, Zhaotong), it identifies significantly more ISA due to its enhanced ability to detect fragmented anthropogenic features such as rural roads and sparse settlements, demonstrating its robustness across diverse landscapes. Moreover, we present biennial ISA maps from 2017 to 2023, capturing spatiotemporal urbanization dynamics across representative cities. The results highlight distinct regional growth patterns: rapid expansion in upstream cities, moderate growth in midstream regions, and saturation in downstream metropolitan areas.
Via

May 07, 2025
Abstract:Stereo image super-resolution (SSR) aims to enhance high-resolution details by leveraging information from stereo image pairs. However, existing stereo super-resolution (SSR) upsampling methods (e.g., pixel shuffle) often overlook cross-view geometric consistency and are limited to fixed-scale upsampling. The key issue is that previous upsampling methods use convolution to independently process deep features of different views, lacking cross-view and non-local information perception, making it difficult to select beneficial information from multi-view scenes adaptively. In this work, we propose Stereo Implicit Neural Representation (StereoINR), which innovatively models stereo image pairs as continuous implicit representations. This continuous representation breaks through the scale limitations, providing a unified solution for arbitrary-scale stereo super-resolution reconstruction of left-right views. Furthermore, by incorporating spatial warping and cross-attention mechanisms, StereoINR enables effective cross-view information fusion and achieves significant improvements in pixel-level geometric consistency. Extensive experiments across multiple datasets show that StereoINR outperforms out-of-training-distribution scale upsampling and matches state-of-the-art SSR methods within training-distribution scales.
Via

May 07, 2025
Abstract:Continuous space-time video super-resolution (C-STVSR) endeavors to upscale videos simultaneously at arbitrary spatial and temporal scales, which has recently garnered increasing interest. However, prevailing methods struggle to yield satisfactory videos at out-of-distribution spatial and temporal scales. On the other hand, event streams characterized by high temporal resolution and high dynamic range, exhibit compelling promise in vision tasks. This paper presents EvEnhancer, an innovative approach that marries the unique advantages of event streams to elevate effectiveness, efficiency, and generalizability for C-STVSR. Our approach hinges on two pivotal components: 1) Event-adapted synthesis capitalizes on the spatiotemporal correlations between frames and events to discern and learn long-term motion trajectories, enabling the adaptive interpolation and fusion of informative spatiotemporal features; 2) Local implicit video transformer integrates local implicit video neural function with cross-scale spatiotemporal attention to learn continuous video representations utilized to generate plausible videos at arbitrary resolutions and frame rates. Experiments show that EvEnhancer achieves superiority on synthetic and real-world datasets and preferable generalizability on out-of-distribution scales against state-of-the-art methods. Code is available at https://github.com/W-Shuoyan/EvEnhancer.
* 19 pages, 11 figures, 11 tables. Accepted to CVPR 2025 (Highlight)
Via

May 06, 2025
Abstract:The fusion of low-spatial-resolution hyperspectral images (HSIs) with high-spatial-resolution conventional images (e.g., panchromatic or RGB) has played a significant role in recent advancements in HSI super-resolution. However, this fusion process relies on the availability of precise alignment between image pairs, which is often challenging in real-world scenarios. To mitigate this limitation, we propose a single-image super-resolution model called the Fusion-Guided Inception Network (FGIN). Specifically, we first employ a spectral-spatial fusion module to effectively integrate spectral and spatial information at an early stage. Next, an Inception-like hierarchical feature extraction strategy is used to capture multiscale spatial dependencies, followed by a dedicated multi-scale fusion block. To further enhance reconstruction quality, we incorporate an optimized upsampling module that combines bilinear interpolation with depthwise separable convolutions. Experimental evaluations on two publicly available hyperspectral datasets demonstrate the competitive performance of our method.
Via

May 06, 2025
Abstract:Recently, there has been an impetus for the application of cutting-edge data collection platforms such as drones mounted with camera sensors for infrastructure asset management. However, the sensor characteristics, proximity to the structure, hard-to-reach access, and environmental conditions often limit the resolution of the datasets. A few studies used super-resolution techniques to address the problem of low-resolution images. Nevertheless, these techniques were observed to increase computational cost and false alarms of distress detection due to the consideration of all the infrastructure images i.e., positive and negative distress classes. In order to address the pre-processing of false alarm and achieve efficient super-resolution, this study developed a framework consisting of convolutional neural network (CNN) and efficient sub-pixel convolutional neural network (ESPCNN). CNN accurately classified both the classes. ESPCNN, which is the lightweight super-resolution technique, generated high-resolution infrastructure image of positive distress obtained from CNN. The ESPCNN outperformed bicubic interpolation in all the evaluation metrics for super-resolution. Based on the performance metrics, the combination of CNN and ESPCNN was observed to be effective in preprocessing the infrastructure images with negative distress, reducing the computational cost and false alarms in the next step of super-resolution. The visual inspection showed that EPSCNN is able to capture crack propagation, complex geometry of even minor cracks. The proposed framework is expected to help the highway agencies in accurately performing distress detection and assist in efficient asset management practices.
* Presented :Transportation Research Board 104th Annual Meeting,
Washington, D.C
Via

May 06, 2025
Abstract:Deep learning has substantially advanced the Single Image Super-Resolution (SISR). However, existing researches have predominantly focused on raw performance gains, with little attention paid to quantifying the transferability of architectural components. In this paper, we introduce the concept of "Universality" and its associated definitions which extend the traditional notion of "Generalization" to encompass the modules' ease of transferability, thus revealing the relationships between module universality and model generalizability. Then we propose the Universality Assessment Equation (UAE), a metric for quantifying how readily a given module could be transplanted across models. Guided by the UAE results of standard residual blocks and other plug-and-play modules, we further design two optimized modules, Cycle Residual Block (CRB) and Depth-Wise Cycle Residual Block (DCRB). Through comprehensive experiments on natural-scene benchmarks, remote-sensing datasets, extreme-industrial imagery and on-device deployments, we demonstrate that networks embedded with the proposed plug-and-play modules outperform several state-of-the-arts, reaching a PSNR enhancement of up to 0.83dB or enabling a 71.3% reduction in parameters with negligible loss in reconstruction fidelity.
Via

May 06, 2025
Abstract:Spectral Estimation (SpecEst) is a core area of signal processing with a history spanning two centuries and applications across various fields. With the advent of digital acquisition, SpecEst algorithms have been widely applied to tasks like frequency super-resolution. However, conventional digital acquisition imposes a trade-off: for a fixed bit budget, one can optimize either signal dynamic range or digital resolution (noise floor), but not both simultaneously. The Unlimited Sensing Framework (USF) overcomes this limitation using modulo non-linearity in analog hardware, enabling a novel approach to SpecEst (USF-SpecEst). However, USF-SpecEst requires new theoretical and algorithmic developments to handle folded samples effectively. In this paper, we derive the Cram\'er-Rao Bounds (CRBs) for SpecEst with noisy modulo-folded samples and reveal a surprising result: the CRBs for USF-SpecEst are scaled versions of the Gaussian CRBs for conventional samples. Numerical experiments validate these bounds, providing a benchmark for USF-SpecEst and facilitating its practical deployment.
* 2 Figs, to appear in Proc. of 2025 IEEE Statistical Signal Processing
(SSP) Workshop
Via

May 05, 2025
Abstract:Image Super-Resolution is a fundamental problem in computer vision with broad applications spacing from medical imaging to satellite analysis. The ability to reconstruct high-resolution images from low-resolution inputs is crucial for enhancing downstream tasks such as object detection and segmentation. While deep learning has significantly advanced SR, achieving high-quality reconstructions with fine-grained details and realistic textures remains challenging, particularly at high upscaling factors. Recent approaches leveraging diffusion models have demonstrated promising results, yet they often struggle to balance perceptual quality with structural fidelity. In this work, we introduce ResQu a novel SR framework that integrates a quaternion wavelet preprocessing framework with latent diffusion models, incorporating a new quaternion wavelet- and time-aware encoder. Unlike prior methods that simply apply wavelet transforms within diffusion models, our approach enhances the conditioning process by exploiting quaternion wavelet embeddings, which are dynamically integrated at different stages of denoising. Furthermore, we also leverage the generative priors of foundation models such as Stable Diffusion. Extensive experiments on domain-specific datasets demonstrate that our method achieves outstanding SR results, outperforming in many cases existing approaches in perceptual quality and standard evaluation metrics. The code will be available after the revision process.
* Accepted for presentation at IJCNN 2025
Via
