Abstract:This paper presents the NTIRE 2025 image super-resolution ($\times$4) challenge, one of the associated competitions of the 10th NTIRE Workshop at CVPR 2025. The challenge aims to recover high-resolution (HR) images from low-resolution (LR) counterparts generated through bicubic downsampling with a $\times$4 scaling factor. The objective is to develop effective network designs or solutions that achieve state-of-the-art SR performance. To reflect the dual objectives of image SR research, the challenge includes two sub-tracks: (1) a restoration track, emphasizes pixel-wise accuracy and ranks submissions based on PSNR; (2) a perceptual track, focuses on visual realism and ranks results by a perceptual score. A total of 286 participants registered for the competition, with 25 teams submitting valid entries. This report summarizes the challenge design, datasets, evaluation protocol, the main results, and methods of each team. The challenge serves as a benchmark to advance the state of the art and foster progress in image SR.
Abstract:This paper reviews the NTIRE 2025 Challenge on Day and Night Raindrop Removal for Dual-Focused Images. This challenge received a wide range of impressive solutions, which are developed and evaluated using our collected real-world Raindrop Clarity dataset. Unlike existing deraining datasets, our Raindrop Clarity dataset is more diverse and challenging in degradation types and contents, which includes day raindrop-focused, day background-focused, night raindrop-focused, and night background-focused degradations. This dataset is divided into three subsets for competition: 14,139 images for training, 240 images for validation, and 731 images for testing. The primary objective of this challenge is to establish a new and powerful benchmark for the task of removing raindrops under varying lighting and focus conditions. There are a total of 361 participants in the competition, and 32 teams submitting valid solutions and fact sheets for the final testing phase. These submissions achieved state-of-the-art (SOTA) performance on the Raindrop Clarity dataset. The project can be found at https://lixinustc.github.io/CVPR-NTIRE2025-RainDrop-Competition.github.io/.
Abstract:This paper presents a comprehensive review of the NTIRE 2025 Challenge on Single-Image Efficient Super-Resolution (ESR). The challenge aimed to advance the development of deep models that optimize key computational metrics, i.e., runtime, parameters, and FLOPs, while achieving a PSNR of at least 26.90 dB on the $\operatorname{DIV2K\_LSDIR\_valid}$ dataset and 26.99 dB on the $\operatorname{DIV2K\_LSDIR\_test}$ dataset. A robust participation saw \textbf{244} registered entrants, with \textbf{43} teams submitting valid entries. This report meticulously analyzes these methods and results, emphasizing groundbreaking advancements in state-of-the-art single-image ESR techniques. The analysis highlights innovative approaches and establishes benchmarks for future research in the field.
Abstract:Bokeh rendering methods play a key role in creating the visually appealing, softly blurred backgrounds seen in professional photography. While recent learning-based approaches show promising results, generating realistic Bokeh with variable strength remains challenging. Existing methods require additional inputs and suffer from unrealistic Bokeh reproduction due to reliance on synthetic data. In this work, we propose Bokehlicious, a highly efficient network that provides intuitive control over Bokeh strength through an Aperture-Aware Attention mechanism, mimicking the physical lens aperture. To further address the lack of high-quality real-world data, we present RealBokeh, a novel dataset featuring 23,000 high-resolution (24-MP) images captured by professional photographers, covering diverse scenes with varied aperture and focal length settings. Evaluations on both our new RealBokeh and established Bokeh rendering benchmarks show that Bokehlicious consistently outperforms SOTA methods while significantly reducing computational cost and exhibiting strong zero-shot generalization. Our method and dataset further extend to defocus deblurring, achieving competitive results on the RealDOF benchmark. Our code and data can be found at https://github.com/TimSeizinger/Bokehlicious
Abstract:Low-Light Image Enhancement (LLIE) is a key task in computational photography and imaging. The problem of enhancing images captured during night or in dark environments has been well-studied in the image signal processing literature. However, current deep learning-based solutions struggle with efficiency and robustness in real-world scenarios (e.g. scenes with noise, saturated pixels, bad illumination). We propose a lightweight neural network that combines image processing in the frequency and spatial domains. Our method, FLOL+, is one of the fastest models for this task, achieving state-of-the-art results on popular real scenes datasets such as LOL and LSRW. Moreover, we are able to process 1080p images under 12ms. Code and models at https://github.com/cidautai/FLOL
Abstract:Photography during night or in dark conditions typically suffers from noise, low light and blurring issues due to the dim environment and the common use of long exposure. Although Deblurring and Low-light Image Enhancement (LLIE) are related under these conditions, most approaches in image restoration solve these tasks separately. In this paper, we present an efficient and robust neural network for multi-task low-light image restoration. Instead of following the current tendency of Transformer-based models, we propose new attention mechanisms to enhance the receptive field of efficient CNNs. Our method reduces the computational costs in terms of parameters and MAC operations compared to previous methods. Our model, DarkIR, achieves new state-of-the-art results on the popular LOLBlur, LOLv2 and Real-LOLBlur datasets, being able to generalize on real-world night and dark images. Code and models at https://github.com/cidautai/DarkIR
Abstract:Professional photo editing remains challenging, requiring extensive knowledge of imaging pipelines and significant expertise. With the ubiquity of smartphone photography, there is an increasing demand for accessible yet sophisticated image editing solutions. While recent deep learning approaches, particularly style transfer methods, have attempted to automate this process, they often struggle with output fidelity, editing control, and complex retouching capabilities. We propose a novel retouch transfer approach that learns from professional edits through before-after image pairs, enabling precise replication of complex editing operations. To facilitate this research direction, we introduce a comprehensive Photo Retouching Dataset comprising 100,000 high-quality images edited using over 170 professional Adobe Lightroom presets. We develop a context-aware Implicit Neural Representation that learns to apply edits adaptively based on image content and context, requiring no pretraining and capable of learning from a single example. Our method extracts implicit transformations from reference edits and adaptively applies them to new images. Through extensive evaluation, we demonstrate that our approach not only surpasses existing methods in photo retouching but also enhances performance in related image reconstruction tasks like Gamut Mapping and Raw Reconstruction. By bridging the gap between professional editing capabilities and automated solutions, our work presents a significant step toward making sophisticated photo editing more accessible while maintaining high-fidelity results. Check the $\href{https://omaralezaby.github.io/inretouch}{Project\ Page}$ for more Results and information about Code and Dataset availability.
Abstract:Multiple low-vision tasks such as denoising, deblurring and super-resolution depart from RGB images and further reduce the degradations, improving the quality. However, modeling the degradations in the sRGB domain is complicated because of the Image Signal Processor (ISP) transformations. Despite of this known issue, very few methods in the literature work directly with sensor RAW images. In this work we tackle image restoration directly in the RAW domain. We design a new realistic degradation pipeline for training deep blind RAW restoration models. Our pipeline considers realistic sensor noise, motion blur, camera shake, and other common degradations. The models trained with our pipeline and data from multiple sensors, can successfully reduce noise and blur, and recover details in RAW images captured from different cameras. To the best of our knowledge, this is the most exhaustive analysis on RAW image restoration. Code available at https://github.com/mv-lab/AISP
Abstract:Implicit Neural Representations (INRs) are a novel paradigm for signal representation that have attracted considerable interest for image compression. INRs offer unprecedented advantages in signal resolution and memory efficiency, enabling new possibilities for compression techniques. However, the existing limitations of INRs for image compression have not been sufficiently addressed in the literature. In this work, we explore the critical yet overlooked limiting factors of INRs, such as computational cost, unstable performance, and robustness. Through extensive experiments and empirical analysis, we provide a deeper and more nuanced understanding of implicit neural image compression methods such as Fourier Feature Networks and Siren. Our work also offers valuable insights for future research in this area.
Abstract:The increasing demand for augmented reality (AR) and virtual reality (VR) applications highlights the need for efficient depth information processing. Depth maps, essential for rendering realistic scenes and supporting advanced functionalities, are typically large and challenging to stream efficiently due to their size. This challenge introduces a focus on developing innovative depth upsampling techniques to reconstruct high-quality depth maps from compressed data. These techniques are crucial for overcoming the limitations posed by depth compression, which often degrades quality, loses scene details and introduces artifacts. By enhancing depth upsampling methods, this challenge aims to improve the efficiency and quality of depth map reconstruction. Our goal is to advance the state-of-the-art in depth processing technologies, thereby enhancing the overall user experience in AR and VR applications.