Large language models increasingly spend inference compute sampling multiple chain-of-thought traces or searching over merged checkpoints. This shifts the bottleneck from generation to selection, often without supervision on the target distribution. We show entropy-based exploration proxies follow an inverted-U with accuracy, suggesting extra exploration can become redundant and induce overthinking. We propose NEX, a white-box label-free unsupervised scoring framework that views reasoning as alternating E-phase (exploration) and X-phase (exploitation). NEX detects E-phase as spikes in newly activated MLP neurons per token from sparse activation caches, then uses a sticky two-state HMM to infer E-X phases and credits E-introduced neurons by whether they are reused in the following X span. These signals yield interpretable neuron weights and a single Good-Mass Fraction score to rank candidate responses and merged variants without task answers. Across reasoning benchmarks and Qwen3 merge families, NEX computed on a small unlabeled activation set predicts downstream accuracy and identifies better variants; we further validate the E-X signal with human annotations and provide causal evidence via "Effective-vs-Redundant" neuron transfer.
We study adaptive learning rate scheduling for norm-constrained optimizers (e.g., Muon and Lion). We introduce a generalized smoothness assumption under which local curvature decreases with the suboptimality gap and empirically verify that this behavior holds along optimization trajectories. Under this assumption, we establish convergence guarantees under an appropriate choice of learning rate, for which warm-up followed by decay arises naturally from the proof rather than being imposed heuristically. Building on this theory, we develop a practical learning rate scheduler that relies only on standard hyperparameters and adapts the warm-up duration automatically at the beginning of training. We evaluate this method on large language model pretraining with LLaMA architectures and show that our adaptive warm-up selection consistently outperforms or at least matches the best manually tuned warm-up schedules across all considered setups, without additional hyperparameter search. Our source code is available at https://github.com/brain-lab-research/llm-baselines/tree/warmup
Tree-boosting is a widely used machine learning technique for tabular data. However, its out-of-sample accuracy is critically dependent on multiple hyperparameters. In this article, we empirically compare several popular methods for hyperparameter optimization for tree-boosting including random grid search, the tree-structured Parzen estimator (TPE), Gaussian-process-based Bayesian optimization (GP-BO), Hyperband, the sequential model-based algorithm configuration (SMAC) method, and deterministic full grid search using $59$ regression and classification data sets. We find that the SMAC method clearly outperforms all the other considered methods. We further observe that (i) a relatively large number of trials larger than $100$ is required for accurate tuning, (ii) using default values for hyperparameters yields very inaccurate models, (iii) all considered hyperparameters can have a material effect on the accuracy of tree-boosting, i.e., there is no small set of hyperparameters that is more important than others, and (iv) choosing the number of boosting iterations using early stopping yields more accurate results compared to including it in the search space for regression tasks.
Agentic Test-Time Scaling (TTS) has delivered state-of-the-art (SOTA) performance on complex software engineering tasks such as code generation and bug fixing. However, its practical adoption remains limited due to significant computational overhead, primarily driven by two key challenges: (1) the high cost associated with deploying excessively large ensembles, and (2) the lack of a reliable mechanism for selecting the optimal candidate solution, ultimately constraining the performance gains that can be realized. To address these challenges, we propose Entropy-Guided Stepwise Scaling (EGSS), a novel TTS framework that dynamically balances efficiency and effectiveness through entropy-guided adaptive search and robust test-suite augmentation. Extensive experiments on SWE-Bench-Verified demonstrate that EGSS consistently boosts performance by 5-10% across all evaluated models. Specifically, it increases the resolved ratio of Kimi-K2-Intruct from 63.2% to 72.2%, and GLM-4.6 from 65.8% to 74.6%. Furthermore, when paired with GLM-4.6, EGSS achieves a new state-of-the-art among open-source large language models. In addition to these accuracy improvements, EGSS reduces inference-time token usage by over 28% compared to existing TTS methods, achieving simultaneous gains in both effectiveness and computational efficiency.
LLM-based multi-agent systems have demonstrated impressive capabilities, but they also introduce significant safety risks when individual agents fail or behave adversarially. In this work, we study the automated design of agentic systems that remain safe even when a subset of agents is compromised. We formalize this challenge as a Stackelberg security game between a system designer (the Meta-Agent) and a best-responding Meta-Adversary that selects and compromises a subset of agents to minimize safety. We propose Meta-Adversary-Meta-Agent (MaMa), a novel algorithm for approximately solving this game and automatically designing safe agentic systems. Our approach uses LLM-based adversarial search, where the Meta-Agent iteratively proposes system designs and receives feedback based on the strongest attacks discovered by the Meta-Adversary. Empirical evaluations across diverse environments show that systems designed with MaMa consistently defend against worst-case attacks while maintaining performance comparable to systems optimized solely for task success. Moreover, the resulting systems generalize to stronger adversaries, as well as ones with different attack objectives or underlying LLMs, demonstrating robust safety beyond the training setting.
Selecting the best data mixture is critical for successful Supervised Fine-Tuning (SFT) of Multimodal Large Language Models. However, determining the optimal mixture weights across multiple domain-specific datasets remains a significant bottleneck due to the combinatorial search space and the high cost associated with even a single training run. This is the so-called Data Mixture Optimization (DMO) problem. On the other hand, model merging unifies domain-specific experts through parameter interpolation. This strategy is efficient, as it only requires a single training run per domain, yet oftentimes leads to suboptimal models. In this work, we take the best of both worlds, studying model merging as an efficient strategy for estimating the performance of different data mixtures. We train domain-specific multimodal experts and evaluate their weighted parameter-space combinations to estimate the efficacy of corresponding data mixtures. We conduct extensive experiments on 14 multimodal benchmarks, and empirically demonstrate that the merged proxy models exhibit a high rank correlation with models trained on actual data mixtures. This decouples the search for optimal mixtures from the resource-intensive training process, thereby providing a scalable and efficient strategy for navigating the complex landscape of mixture weights. Code is publicly available at https://github.com/BerasiDavide/mLLMs_merging_4_DMO.
While passive agents merely follow instructions, proactive agents align with higher-level objectives, such as assistance and safety by continuously monitoring the environment to determine when and how to act. However, developing proactive agents is hindered by the lack of specialized resources. To address this, we introduce ProAct-75, a benchmark designed to train and evaluate proactive agents across diverse domains, including assistance, maintenance, and safety monitoring. Spanning 75 tasks, our dataset features 91,581 step-level annotations enriched with explicit task graphs. These graphs encode step dependencies and parallel execution possibilities, providing the structural grounding necessary for complex decision-making. Building on this benchmark, we propose ProAct-Helper, a reference baseline powered by a Multimodal Large Language Model (MLLM) that grounds decision-making in state detection, and leveraging task graphs to enable entropy-driven heuristic search for action selection, allowing agents to execute parallel threads independently rather than mirroring the human's next step. Extensive experiments demonstrate that ProAct-Helper outperforms strong closed-source models, improving trigger detection mF1 by 6.21%, saving 0.25 more steps in online one-step decision, and increasing the rate of parallel actions by 15.58%.
We introduce BayeSQP, a novel algorithm for general black-box optimization that merges the structure of sequential quadratic programming with concepts from Bayesian optimization. BayeSQP employs second-order Gaussian process surrogates for both the objective and constraints to jointly model the function values, gradients, and Hessian from only zero-order information. At each iteration, a local subproblem is constructed using the GP posterior estimates and solved to obtain a search direction. Crucially, the formulation of the subproblem explicitly incorporates uncertainty in both the function and derivative estimates, resulting in a tractable second-order cone program for high probability improvements under model uncertainty. A subsequent one-dimensional line search via constrained Thompson sampling selects the next evaluation point. Empirical results show thatBayeSQP outperforms state-of-the-art methods in specific high-dimensional settings. Our algorithm offers a principled and flexible framework that bridges classical optimization techniques with modern approaches to black-box optimization.
Large Vision-Language Models (LVLMs) have advanced rapidly by aligning visual patches with the text embedding space, but a fixed visual-token budget forces images to be resized to a uniform pretraining resolution, often erasing fine-grained details and causing hallucinations via over-reliance on language priors. Recent attention-guided enhancement (e.g., cropping or region-focused attention allocation) alleviates this, yet it commonly hinges on a static "magic layer" empirically chosen on simple recognition benchmarks and thus may not transfer to complex reasoning tasks. In contrast to this static assumption, we propose a dynamic perspective on visual grounding. Through a layer-wise sensitivity analysis, we demonstrate that visual grounding is a dynamic process: while simple object recognition tasks rely on middle layers, complex visual search and reasoning tasks require visual information to be reactivated at deeper layers. Based on this observation, we introduce Visual Activation by Query (VAQ), a metric that identifies the layer whose attention map is most relevant to query-specific visual grounding by measuring attention sensitivity to the input query. Building on VAQ, we further propose LASER (Layer-adaptive Attention-guided Selective visual and decoding Enhancement for Reasoning), a training-free inference procedure that adaptively selects task-appropriate layers for visual localization and question answering. Experiments across diverse VQA benchmarks show that LASER significantly improves VQA accuracy across tasks with varying levels of complexity.
Large language Model (LLM)-assisted algorithm discovery is an iterative, black-box optimization process over programs to approximatively solve a target task, where an LLM proposes candidate programs and an external evaluator provides task feedback. Despite intense recent research on the topic and promising results, how can the LLM internal representation of the space of possible programs be maximally exploited to improve performance is an open question. Here, we introduce Contrastive Concept-Tree Search (CCTS), which extracts a hierarchical concept representation from the generated programs and learns a contrastive concept model that guides parent selection. By reweighting parents using a likelihood-ratio score between high- and low-performing solutions, CCTS biases search toward useful concept combinations and away from misleading ones, providing guidance through an explicit concept hierarchy rather than the algorithm lineage constructed by the LLM. We show that CCTS improves search efficiency over fitness-based baselines and produces interpretable, task-specific concept trees across a benchmark of open Erdős-type combinatorics problems. Our analysis indicates that the gains are driven largely by learning which concepts to avoid. We further validate these findings in a controlled synthetic algorithm-discovery environment, which reproduces qualitatively the search dynamics observed with the LLMs.