Abstract:We present MS-GAGA (Metric-Selective Guided Adversarial Generation Attack), a two-stage framework for crafting transferable and visually imperceptible adversarial examples against deepfake detectors in black-box settings. In Stage 1, a dual-stream attack module generates adversarial candidates: MNTD-PGD applies enhanced gradient calculations optimized for small perturbation budgets, while SG-PGD focuses perturbations on visually salient regions. This complementary design expands the adversarial search space and improves transferability across unseen models. In Stage 2, a metric-aware selection module evaluates candidates based on both their success against black-box models and their structural similarity (SSIM) to the original image. By jointly optimizing transferability and imperceptibility, MS-GAGA achieves up to 27% higher misclassification rates on unseen detectors compared to state-of-the-art attacks.
Abstract:With active research in audio compression techniques yielding substantial breakthroughs, spectral reconstruction of low-quality audio waves remains a less indulged topic. In this paper, we propose a novel approach for reconstructing higher frequencies from considerably longer sequences of low-quality MP3 audio waves. Our technique involves inpainting audio spectrograms with residually stacked autoencoder blocks by manipulating individual amplitude and phase values in relation to perceptual differences. Our architecture presents several bottlenecks while preserving the spectral structure of the audio wave via skip-connections. We also compare several task metrics and demonstrate our visual guide to loss selection. Moreover, we show how to leverage differential quantization techniques to reduce the initial model size by more than half while simultaneously reducing inference time, which is crucial in real-world applications.