Abstract:This paper investigates a sample-based solution to the hybrid mode control problem across non-differentiable and algorithmic hybrid modes. Our approach reasons about a set of hybrid control modes as an integer-based optimization problem where we select what mode to apply, when to switch to another mode, and the duration for which we are in a given control mode. A sample-based variation is derived to efficiently search the integer domain for optimal solutions. We find our formulation yields strong performance guarantees that can be applied to a number of robotics-related tasks. In addition, our approach is able to synthesize complex algorithms and policies to compound behaviors and achieve challenging tasks. Last, we demonstrate the effectiveness of our approach in real-world robotic examples that require reactive switching between long-term planning and high-frequency control.
Abstract:In this work, we propose a computationally efficient algorithm for visual policy learning that leverages differentiable simulation and first-order analytical policy gradients. Our approach decouple the rendering process from the computation graph, enabling seamless integration with existing differentiable simulation ecosystems without the need for specialized differentiable rendering software. This decoupling not only reduces computational and memory overhead but also effectively attenuates the policy gradient norm, leading to more stable and smoother optimization. We evaluate our method on standard visual control benchmarks using modern GPU-accelerated simulation. Experiments show that our approach significantly reduces wall-clock training time and consistently outperforms all baseline methods in terms of final returns. Notably, on complex tasks such as humanoid locomotion, our method achieves a $4\times$ improvement in final return, and successfully learns a humanoid running policy within 4 hours on a single GPU.




Abstract:Snake robots, comprised of sequentially connected joint actuators, have recently gained increasing attention in the industrial field, like life detection in narrow space. Such robot can navigate through the complex environment via the cooperation of multiple motors located on the backbone. However, controlling the robots under unknown environment is challenging, and conventional control strategies can be energy inefficient or even fail to navigate to the destination. In this work, a snake locomotion gait policy is developed via deep reinforcement learning (DRL) for energy-efficient control. We apply proximal policy optimization (PPO) to each joint motor parameterized by angular velocity and the DRL agent learns the standard serpenoid curve at each timestep. The robot simulator and task environment are built upon PyBullet. Comparing to conventional control strategies, the snake robots controlled by the trained PPO agent can achieve faster movement and more energy-efficient locomotion gait. This work demonstrates that DRL provides an energy-efficient solution for robot control.