Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
In networked environments, users frequently share recommendations about content, products, services, and courses of action with others. The extent to which such recommendations are successful and adopted is highly contextual, dependent on the characteristics of the sender, recipient, their relationship, the recommended item, and the medium, which makes peer influence probabilities highly heterogeneous. Accurate estimation of these probabilities is key to understanding information diffusion processes and to improving the effectiveness of viral marketing strategies. However, learning these probabilities from data is challenging; static data may capture correlations between peer recommendations and peer actions but fails to reveal influence relationships. Online learning algorithms can learn these probabilities from interventions but either waste resources by learning from random exploration or optimize for rewards, thus favoring exploration of the space with higher influence probabilities. In this work, we study learning peer influence probabilities under a contextual linear bandit framework. We show that a fundamental trade-off can arise between regret minimization and estimation error, characterize all achievable rate pairs, and propose an uncertainty-guided exploration algorithm that, by tuning a parameter, attains any pair within this trade-off. Our experiments on semi-synthetic network datasets show the advantages of our method over static methods and contextual bandits that ignore this trade-off.
We provide an inferential framework to assess variable importance for heterogeneous treatment effects. This assessment is especially useful in high-risk domains such as medicine, where decision makers hesitate to rely on black-box treatment recommendation algorithms. The variable importance measures we consider are local in that they may differ across individuals, while the inference is global in that it tests whether a given variable is important for any individual. Our approach builds on recent developments in semiparametric theory for function-valued parameters, and is valid even when statistical machine learning algorithms are employed to quantify treatment effect heterogeneity. We demonstrate the applicability of our method to infectious disease prevention strategies.
Current medical practice depends on standardized treatment frameworks and empirical methodologies that neglect individual patient variations, leading to suboptimal health outcomes. We develop a comprehensive system integrating Large Language Models (LLMs), Conditional Tabular Generative Adversarial Networks (CTGAN), T-learner counterfactual models, and contextual bandit approaches to provide customized, data-informed clinical recommendations. The approach utilizes LLMs to process unstructured medical narratives into structured datasets (93.2% accuracy), uses CTGANs to produce realistic synthetic patient data (55% accuracy via two-sample verification), deploys T-learners to forecast patient-specific treatment responses (84.3% accuracy), and integrates prior-informed contextual bandits to enhance online therapeutic selection by effectively balancing exploration of new possibilities with exploitation of existing knowledge. Testing on stage III colon cancer datasets revealed that our KernelUCB approach obtained 0.60-0.61 average reward scores across 5,000 rounds, exceeding other reference methods. This comprehensive system overcomes cold-start limitations in online learning environments, improves computational effectiveness, and constitutes notable progress toward individualized medicine adapted to specific patient characteristics.
The integration of large language models (LLMs) into recommendation systems has revealed promising potential through their capacity to extract world knowledge for enhanced reasoning capabilities. However, current methodologies that adopt static schema-based prompting mechanisms encounter significant limitations: (1) they employ universal template structures that neglect the multi-faceted nature of user preference diversity; (2) they implement superficial alignment between semantic knowledge representations and behavioral feature spaces without achieving comprehensive latent space integration. To address these challenges, we introduce CoCo, an end-to-end framework that dynamically constructs user-specific contextual knowledge embeddings through a dual-mechanism approach. Our method realizes profound integration of semantic and behavioral latent dimensions via adaptive knowledge fusion and contradiction resolution modules. Experimental evaluations across diverse benchmark datasets and an enterprise-level e-commerce platform demonstrate CoCo's superiority, achieving a maximum 8.58% improvement over seven cutting-edge methods in recommendation accuracy. The framework's deployment on a production advertising system resulted in a 1.91% sales growth, validating its practical effectiveness. With its modular design and model-agnostic architecture, CoCo provides a versatile solution for next-generation recommendation systems requiring both knowledge-enhanced reasoning and personalized adaptation.
In large scale recommendation systems like the LinkedIn Feed, the retrieval stage is critical for narrowing hundreds of millions of potential candidates to a manageable subset for ranking. LinkedIn's Feed serves suggested content from outside of the member's network (based on the member's topical interests), where 2000 candidates are retrieved from a pool of hundreds of millions candidate with a latency budget of a few milliseconds and inbound QPS of several thousand per second. This paper presents a novel retrieval approach that fine-tunes a large causal language model (Meta's LLaMA 3) as a dual encoder to generate high quality embeddings for both users (members) and content (items), using only textual input. We describe the end to end pipeline, including prompt design for embedding generation, techniques for fine-tuning at LinkedIn's scale, and infrastructure for low latency, cost effective online serving. We share our findings on how quantizing numerical features in the prompt enables the information to get properly encoded in the embedding, facilitating greater alignment between the retrieval and ranking layer. The system was evaluated using offline metrics and an online A/B test, which showed substantial improvements in member engagement. We observed significant gains among newer members, who often lack strong network connections, indicating that high-quality suggested content aids retention. This work demonstrates how generative language models can be effectively adapted for real time, high throughput retrieval in industrial applications.
Multimodal embedding models aim to yield informative unified representations that empower diverse cross-modal tasks. Despite promising developments in the evolution from CLIP-based dual-tower architectures to large vision-language models, prior works still face unavoidable challenges in real-world applications and business scenarios, such as the limited modality support, unstable training mechanisms, and industrial domain gaps. In this work, we introduce SAIL-Embedding, an omni-modal embedding foundation model that addresses these issues through tailored training strategies and architectural design. In the optimization procedure, we propose a multi-stage training scheme to boost the multifaceted effectiveness of representation learning. Specifically, the content-aware progressive training aims to enhance the model's adaptability to diverse downstream tasks and master enriched cross-modal proficiency. The collaboration-aware recommendation enhancement training further adapts multimodal representations for recommendation scenarios by distilling knowledge from sequence-to-item and ID-to-item embeddings while mining user historical interests. Concurrently, we develop the stochastic specialization and dataset-driven pattern matching to strengthen model training flexibility and generalizability. Experimental results show that SAIL-Embedding achieves SOTA performance compared to other methods in different retrieval tasks. In online experiments across various real-world scenarios integrated with our model, we observe a significant increase in Lifetime (LT), which is a crucial indicator for the recommendation experience. For instance, the model delivers the 7-day LT gain of +0.158% and the 14-day LT gain of +0.144% in the Douyin-Selected scenario. For the Douyin feed rank model, the match features produced by SAIL-Embedding yield a +0.08% AUC gain.
Artificial Intelligence Virtual Cells (AIVCs) aim to learn executable, decision-relevant models of cell state from multimodal, multiscale measurements. Recent studies have introduced single-cell and spatial foundation models, improved cross-modality alignment, scaled perturbation atlases, and explored pathway-level readouts. Nevertheless, although held-out validation is standard practice, evaluations remain predominantly within single datasets and settings; evidence indicates that transport across laboratories and platforms is often limited, that some data splits are vulnerable to leakage and coverage bias, and that dose, time and combination effects are not yet systematically handled. Cross-scale coupling also remains constrained, as anchors linking molecular, cellular and tissue levels are sparse, and alignment to scientific or clinical readouts varies across studies. We propose a model-agnostic Cell-State Latent (CSL) perspective that organizes learning via an operator grammar: measurement, lift/project for cross-scale coupling, and intervention for dosing and scheduling. This view motivates a decision-aligned evaluation blueprint across modality, scale, context and intervention, and emphasizes function-space readouts such as pathway activity, spatial neighborhoods and clinically relevant endpoints. We recommend operator-aware data design, leakage-resistant partitions, and transparent calibration and reporting to enable reproducible, like-for-like comparisons.
In recent years, various approaches have been proposed to leverage large language models (LLMs) for incorporating textual information about items into recommender systems. Existing methods primarily focus on either fine-tuning LLMs to generate recommendations or integrating LLM-based embeddings into downstream models. In this work, we follow the latter direction and propose \textbf{TextGCN}, which applies parameter-free graph convolution layers directly over LLM-based item-title embeddings, instead of learning ID-based embeddings as in traditional methods. By combining language semantics with graph message passing, this architecture achieves state-of-the-art zero-shot performance, significantly outperforming prior approaches. Furthermore, we introduce \textbf{TextGCN-MLP}, which extends TextGCN with a trainable multilayer perceptron trained using a contrastive loss, achieving state-of-the-art in-domain performance on recommendation benchmarks. However, the zero-shot performance of TextGCN-MLP remains lower than that of TextGCN, highlighting the trade-off between in-domain specialization and zero-shot generalization. We release our code on github at \href{https://github.com/ChernovAndrey/TFCE}{github.com/ChernovAndrey/TFCE}.
Multimodal recommender systems enhance personalized recommendations in e-commerce and online advertising by integrating visual, textual, and user-item interaction data. However, existing methods often overlook two critical biases: (i) modal confounding, where latent factors (e.g., brand style or product category) simultaneously drive multiple modalities and influence user preference, leading to spurious feature-preference associations; (ii) interaction bias, where genuine user preferences are mixed with noise from exposure effects and accidental clicks. To address these challenges, we propose a Causal-inspired multimodal Recommendation framework. Specifically, we introduce a dual-channel cross-modal diffusion module to identify hidden modal confounders, utilize back-door adjustment with hierarchical matching and vector-quantized codebooks to block confounding paths, and apply front-door adjustment combined with causal topology reconstruction to build a deconfounded causal subgraph. Extensive experiments on three real-world e-commerce datasets demonstrate that our method significantly outperforms state-of-the-art baselines while maintaining strong interpretability.




Retrieval-augmented generation (RAG) enhances large language models (LLMs) by retrieving external documents. As an emerging form of RAG, parametric retrieval-augmented generation (PRAG) encodes documents as model parameters (i.e., LoRA modules) and injects these representations into the model during inference, enabling interaction between the LLM and documents at parametric level. Compared with directly placing documents in the input context, PRAG is more efficient and has the potential to offer deeper model-document interaction. Despite its growing attention, the mechanism underlying parametric injection remains poorly understood. In this work, we present a systematic study of PRAG to clarify the role of parametric injection, showing that parameterized documents capture only partial semantic information of documents, and relying on them alone yields inferior performance compared to interaction at text level. However, these parametric representations encode high-level document information that can enhance the model's understanding of documents within the input context. When combined parameterized documents with textual documents, the model can leverage relevant information more effectively and become more robust to noisy inputs, achieving better performance than either source alone. We recommend jointly using parameterized and textual documents and advocate for increasing the information content of parametric representations to advance PRAG.