Get our free extension to see links to code for papers anywhere online!

 Add to Chrome

 Add to Firefox

CatalyzeX Code Finder - Browser extension linking code for ML papers across the web! | Product Hunt Embed

Models, code, and papers for "Recommendation"

The Deconfounded Recommender: A Causal Inference Approach to Recommendation

Aug 20, 2018
Yixin Wang, Dawen Liang, Laurent Charlin, David M. Blei

The goal of a recommender system is to show its users items that they will like. In forming its prediction, the recommender system tries to answer: "what would the rating be if we 'forced' the user to watch the movie?" This is a question about an intervention in the world, a causal question, and so traditional recommender systems are doing causal inference from observational data. This paper develops a causal inference approach to recommendation. Traditional recommenders are likely biased by unobserved confounders, variables that affect both the "treatment assignments" (which movies the users watch) and the "outcomes" (how they rate them). We develop the deconfounded recommender, a strategy to leverage classical recommendation models for causal predictions. The deconfounded recommender uses Poisson factorization on which movies users watched to infer latent confounders in the data; it then augments common recommendation models to correct for potential confounding bias. The deconfounded recommender improves recommendation and it enjoys stable performance against interventions on test sets.

* 14 pages, 3 figures 

  Access Paper or Ask Questions

Non-IID Recommender Systems: A Review and Framework of Recommendation Paradigm Shifting

Jul 01, 2020
Longbing Cao

While recommendation plays an increasingly critical role in our living, study, work, and entertainment, the recommendations we receive are often for irrelevant, duplicate, or uninteresting products and services. A critical reason for such bad recommendations lies in the intrinsic assumption that recommended users and items are independent and identically distributed (IID) in existing theories and systems. Another phenomenon is that, while tremendous efforts have been made to model specific aspects of users or items, the overall user and item characteristics and their non-IIDness have been overlooked. In this paper, the non-IID nature and characteristics of recommendation are discussed, followed by the non-IID theoretical framework in order to build a deep and comprehensive understanding of the intrinsic nature of recommendation problems, from the perspective of both couplings and heterogeneity. This non-IID recommendation research triggers the paradigm shift from IID to non-IID recommendation research and can hopefully deliver informed, relevant, personalized, and actionable recommendations. It creates exciting new directions and fundamental solutions to address various complexities including cold-start, sparse data-based, cross-domain, group-based, and shilling attack-related issues.

* Engineering, 2: 212-224, 2016 

  Access Paper or Ask Questions

Collective Mobile Sequential Recommendation: A Recommender System for Multiple Taxicabs

Jun 22, 2019
Tongwen Wu, Zizhen Zhang, Yanzhi Li, Jiahai Wang

Mobile sequential recommendation was originally designed to find a promising route for a single taxicab. Directly applying it for multiple taxicabs may cause an excessive overlap of recommended routes. The multi-taxicab recommendation problem is challenging and has been less studied. In this paper, we first formalize a collective mobile sequential recommendation problem based on a classic mathematical model, which characterizes time-varying influence among competing taxicabs. Next, we propose a new evaluation metric for a collection of taxicab routes aimed to minimize the sum of potential travel time. We then develop an efficient algorithm to calculate the metric and design a greedy recommendation method to approximate the solution. Finally, numerical experiments show the superiority of our methods. In trace-driven simulation, the set of routes recommended by our method significantly outperforms those obtained by conventional methods.


  Access Paper or Ask Questions

ML-based Visualization Recommendation: Learning to Recommend Visualizations from Data

Sep 25, 2020
Xin Qian, Ryan A. Rossi, Fan Du, Sungchul Kim, Eunyee Koh, Sana Malik, Tak Yeon Lee, Joel Chan

Visualization recommendation seeks to generate, score, and recommend to users useful visualizations automatically, and are fundamentally important for exploring and gaining insights into a new or existing dataset quickly. In this work, we propose the first end-to-end ML-based visualization recommendation system that takes as input a large corpus of datasets and visualizations, learns a model based on this data. Then, given a new unseen dataset from an arbitrary user, the model automatically generates visualizations for that new dataset, derive scores for the visualizations, and output a list of recommended visualizations to the user ordered by effectiveness. We also describe an evaluation framework to quantitatively evaluate visualization recommendation models learned from a large corpus of visualizations and datasets. Through quantitative experiments, a user study, and qualitative analysis, we show that our end-to-end ML-based system recommends more effective and useful visualizations compared to existing state-of-the-art rule-based systems. Finally, we observed a strong preference by the human experts in our user study towards the visualizations recommended by our ML-based system as opposed to the rule-based system (5.92 from a 7-point Likert scale compared to only 3.45).

* 17 pages, 7 figures 

  Access Paper or Ask Questions

Loss Aversion in Recommender Systems: Utilizing Negative User Preference to Improve Recommendation Quality

Dec 29, 2018
Bibek Paudel, Sandro Luck, Abraham Bernstein

Negative user preference is an important context that is not sufficiently utilized by many existing recommender systems. This context is especially useful in scenarios where the cost of negative items is high for the users. In this work, we describe a new recommender algorithm that explicitly models negative user preferences in order to recommend more positive items at the top of recommendation-lists. We build upon existing machine-learning model to incorporate the contextual information provided by negative user preference. With experimental evaluations on two openly available datasets, we show that our method is able to improve recommendation quality: by improving accuracy and at the same time reducing the number of negative items at the top of recommendation-lists. Our work demonstrates the value of the contextual information provided by negative feedback, and can also be extended to signed social networks and link prediction in other networks.

* The First International Workshop on Context-Aware Recommendation Systems with Big Data Analytics (CARS-BDA), co-organized with the 12th ACM International Conference on Web Search and Data Mining, 2019, Melbourne, Australia 

  Access Paper or Ask Questions

Reciprocal Recommender Systems: Analysis of State-of-Art Literature, Challenges and Opportunities on Social Recommendation

Jul 17, 2020
Ivan Palomares, Carlos Porcel, Luiz Pizzato, Ido Guy, Enrique Herrera-Viedma

Many social services including online dating, social media, recruitment and online learning, largely rely on \matching people with the right people". The success of these services and the user experience with them often depends on their ability to match users. Reciprocal Recommender Systems (RRS) arose to facilitate this process by identifying users who are a potential match for each other, based on information provided by them. These systems are inherently more complex than user-item recommendation approaches and unidirectional user recommendation services, since they need to take into account both users' preferences towards each other in the recommendation process. This entails not only predicting accurate preference estimates as classical recommenders do, but also defining adequate fusion processes for aggregating user-to-user preferential information. The latter is a crucial and distinctive, yet barely investigated aspect in RRS research. This paper presents a snapshot analysis of the extant literature to summarize the state-of-the-art RRS research to date, focusing on the fundamental features that differentiate RRSs from other classes of recommender systems. Following this, we discuss the challenges and opportunities for future research on RRSs, with special focus on (i) fusion strategies to account for reciprocity and (ii) emerging application domains related to social recommendation.

* 53 pages, 6 figures, 8 tables, 176 references 

  Access Paper or Ask Questions

NCBO Ontology Recommender 2.0: An Enhanced Approach for Biomedical Ontology Recommendation

May 25, 2017
Marcos Martinez-Romero, Clement Jonquet, Martin J. O'Connor, John Graybeal, Alejandro Pazos, Mark A. Musen

Biomedical researchers use ontologies to annotate their data with ontology terms, enabling better data integration and interoperability. However, the number, variety and complexity of current biomedical ontologies make it cumbersome for researchers to determine which ones to reuse for their specific needs. To overcome this problem, in 2010 the National Center for Biomedical Ontology (NCBO) released the Ontology Recommender, which is a service that receives a biomedical text corpus or a list of keywords and suggests ontologies appropriate for referencing the indicated terms. We developed a new version of the NCBO Ontology Recommender. Called Ontology Recommender 2.0, it uses a new recommendation approach that evaluates the relevance of an ontology to biomedical text data according to four criteria: (1) the extent to which the ontology covers the input data; (2) the acceptance of the ontology in the biomedical community; (3) the level of detail of the ontology classes that cover the input data; and (4) the specialization of the ontology to the domain of the input data. Our evaluation shows that the enhanced recommender provides higher quality suggestions than the original approach, providing better coverage of the input data, more detailed information about their concepts, increased specialization for the domain of the input data, and greater acceptance and use in the community. In addition, it provides users with more explanatory information, along with suggestions of not only individual ontologies but also groups of ontologies. It also can be customized to fit the needs of different scenarios. Ontology Recommender 2.0 combines the strengths of its predecessor with a range of adjustments and new features that improve its reliability and usefulness. Ontology Recommender 2.0 recommends over 500 biomedical ontologies from the NCBO BioPortal platform, where it is openly available.

* Journal of Biomedical Semantics 8 (2017) 1-22 
* 29 pages, 8 figures, 11 tables 

  Access Paper or Ask Questions

Explainable Recommendation: A Survey and New Perspectives

Sep 04, 2018
Yongfeng Zhang, Xu Chen

Explainable Recommendation refers to the personalized recommendation algorithms that address the problem of why - they not only provide users with the recommendations, but also provide explanations to make the user or system designer aware of why such items are recommended. In this way, it helps to improve the effectiveness, efficiency, persuasiveness, and user satisfaction of recommendation systems. In recent years, a large number of explainable recommendation approaches -- especially model-based explainable recommendation algorithms -- have been proposed and adopted in real-world systems. In this survey, we review the work on explainable recommendation that has been published in or before the year of 2018. We first highlight the position of explainable recommendation in recommender system research by categorizing recommendation problems into the 5W, i.e., what, when, who, where, and why. We then conduct a comprehensive survey of explainable recommendation itself in terms of three aspects: 1) We provide a chronological research line of explanations in recommender systems, including the user study approaches in the early years, as well as the more recent model-based approaches. 2) We provide a taxonomy for explainable recommendation algorithms, including user-based, item-based, model-based, and post-model explanations. 3) We summarize the application of explainable recommendation in different recommendation tasks, including product recommendation, social recommendation, POI recommendation, etc. We devote a section to discuss the explanation perspectives in the broader IR and machine learning settings, as well as their relationship with explainable recommendation research. We end the survey by discussing potential future research directions to promote the explainable recommendation research area.

* 90 pages 

  Access Paper or Ask Questions

Trust in Recommender Systems: A Deep Learning Perspective

Apr 08, 2020
Manqing Dong, Feng Yuan, Lina Yao, Xianzhi Wang, Xiwei Xu, Liming Zhu

A significant remaining challenge for existing recommender systems is that users may not trust the recommender systems for either lack of explanation or inaccurate recommendation results. Thus, it becomes critical to embrace a trustworthy recommender system. This survey provides a systemic summary of three categories of trust-aware recommender systems: social-aware recommender systems that leverage users' social relationships; robust recommender systems that filter untruthful noises (e.g., spammers and fake information) or enhance attack resistance; explainable recommender systems that provide explanations of recommended items. We focus on the work based on deep learning techniques, an emerging area in the recommendation research.


  Access Paper or Ask Questions

Maximizing profit using recommender systems

Aug 25, 2009
Aparna Das, Claire Mathieu, Daniel Ricketts

Traditional recommendation systems make recommendations based solely on the customer's past purchases, product ratings and demographic data without considering the profitability the items being recommended. In this work we study the question of how a vendor can directly incorporate the profitability of items into its recommender so as to maximize its expected profit while still providing accurate recommendations. Our approach uses the output of any traditional recommender system and adjust them according to item profitabilities. Our approach is parameterized so the vendor can control how much the recommendation incorporating profits can deviate from the traditional recommendation. We study our approach under two settings and show that it achieves approximately 22% more profit than traditional recommendations.


  Access Paper or Ask Questions

Deep Learning Recommendation Model for Personalization and Recommendation Systems

May 31, 2019
Maxim Naumov, Dheevatsa Mudigere, Hao-Jun Michael Shi, Jianyu Huang, Narayanan Sundaraman, Jongsoo Park, Xiaodong Wang, Udit Gupta, Carole-Jean Wu, Alisson G. Azzolini, Dmytro Dzhulgakov, Andrey Mallevich, Ilia Cherniavskii, Yinghai Lu, Raghuraman Krishnamoorthi, Ansha Yu, Volodymyr Kondratenko, Stephanie Pereira, Xianjie Chen, Wenlin Chen, Vijay Rao, Bill Jia, Liang Xiong, Misha Smelyanskiy

With the advent of deep learning, neural network-based recommendation models have emerged as an important tool for tackling personalization and recommendation tasks. These networks differ significantly from other deep learning networks due to their need to handle categorical features and are not well studied or understood. In this paper, we develop a state-of-the-art deep learning recommendation model (DLRM) and provide its implementation in both PyTorch and Caffe2 frameworks. In addition, we design a specialized parallelization scheme utilizing model parallelism on the embedding tables to mitigate memory constraints while exploiting data parallelism to scale-out compute from the fully-connected layers. We compare DLRM against existing recommendation models and characterize its performance on the Big Basin AI platform, demonstrating its usefulness as a benchmark for future algorithmic experimentation and system co-design.

* 10 pages, 6 figures 

  Access Paper or Ask Questions

Recommendation under Capacity Constraints

Mar 12, 2017
Konstantina Christakopoulou, Jaya Kawale, Arindam Banerjee

In this paper, we investigate the common scenario where every candidate item for recommendation is characterized by a maximum capacity, i.e., number of seats in a Point-of-Interest (POI) or size of an item's inventory. Despite the prevalence of the task of recommending items under capacity constraints in a variety of settings, to the best of our knowledge, none of the known recommender methods is designed to respect capacity constraints. To close this gap, we extend three state-of-the art latent factor recommendation approaches: probabilistic matrix factorization (PMF), geographical matrix factorization (GeoMF), and bayesian personalized ranking (BPR), to optimize for both recommendation accuracy and expected item usage that respects the capacity constraints. We introduce the useful concepts of user propensity to listen and item capacity. Our experimental results in real-world datasets, both for the domain of item recommendation and POI recommendation, highlight the benefit of our method for the setting of recommendation under capacity constraints.

* Extended methods section and experimental section to include bayesian personalized ranking objective as well 

  Access Paper or Ask Questions

INSPIRED: Toward Sociable Recommendation Dialog Systems

Oct 08, 2020
Shirley Anugrah Hayati, Dongyeop Kang, Qingxiaoyang Zhu, Weiyan Shi, Zhou Yu

In recommendation dialogs, humans commonly disclose their preference and make recommendations in a friendly manner. However, this is a challenge when developing a sociable recommendation dialog system, due to the lack of dialog dataset annotated with such sociable strategies. Therefore, we present INSPIRED, a new dataset of 1,001 human-human dialogs for movie recommendation with measures for successful recommendations. To better understand how humans make recommendations in communication, we design an annotation scheme related to recommendation strategies based on social science theories and annotate these dialogs. Our analysis shows that sociable recommendation strategies, such as sharing personal opinions or communicating with encouragement, more frequently lead to successful recommendations. Based on our dataset, we train end-to-end recommendation dialog systems with and without our strategy labels. In both automatic and human evaluation, our model with strategy incorporation outperforms the baseline model. This work is a first step for building sociable recommendation dialog systems with a basis of social science theories.

* Accepted as a long paper at EMNLP 2020, corrected typos 

  Access Paper or Ask Questions

A Survey Paper on Recommender Systems

Dec 24, 2010
Dhoha Almazro, Ghadeer Shahatah, Lamia Albdulkarim, Mona Kherees, Romy Martinez, William Nzoukou

Recommender systems apply data mining techniques and prediction algorithms to predict users' interest on information, products and services among the tremendous amount of available items. The vast growth of information on the Internet as well as number of visitors to websites add some key challenges to recommender systems. These are: producing accurate recommendation, handling many recommendations efficiently and coping with the vast growth of number of participants in the system. Therefore, new recommender system technologies are needed that can quickly produce high quality recommendations even for huge data sets. To address these issues we have explored several collaborative filtering techniques such as the item based approach, which identify relationship between items and indirectly compute recommendations for users based on these relationships. The user based approach was also studied, it identifies relationships between users of similar tastes and computes recommendations based on these relationships. In this paper, we introduce the topic of recommender system. It provides ways to evaluate efficiency, scalability and accuracy of recommender system. The paper also analyzes different algorithms of user based and item based techniques for recommendation generation. Moreover, a simple experiment was conducted using a data mining application -Weka- to apply data mining algorithms to recommender system. We conclude by proposing our approach that might enhance the quality of recommender systems.

* This paper has some typos in it 

  Access Paper or Ask Questions

Job Recommendation through Progression of Job Selection

May 28, 2019
Amber Nigam, Aakash Roy, Hartaran Singh, Aabhas Tonwer

Job recommendation has traditionally been treated as a filter-based match or as a recommendation based on the features of jobs and candidates as discrete entities. In this paper, we introduce a methodology where we leverage the progression of job selection by candidates using machine learning. Additionally, our recommendation is composed of several other sub-recommendations that contribute to at least one of a) making recommendations serendipitous for the end user b) overcoming cold-start for both candidates and jobs. One of the unique selling propositions of our methodology is the way we have used skills as embedded features and derived latent competencies from them, thereby attempting to expand the skills of candidates and jobs to achieve more coverage in the skill domain. We have deployed our model in a real-world job recommender system and have achieved the best click-through rate through a blended approach of machine-learned recommendations and other sub-recommendations. For recommending jobs through machine learning that forms a significant part of our recommendation, we achieve the best results through Bi-LSTM with attention.


  Access Paper or Ask Questions

Recommending Dream Jobs in a Biased Real World

May 10, 2019
Nadia Fawaz

Machine learning models learn what we teach them to learn. Machine learning is at the heart of recommender systems. If a machine learning model is trained on biased data, the resulting recommender system may reflect the biases in its recommendations. Biases arise at different stages in a recommender system, from existing societal biases in the data such as the professional gender gap, to biases introduced by the data collection or modeling processes. These biases impact the performance of various components of recommender systems, from offline training, to evaluation and online serving of recommendations in production systems. Specific techniques can help reduce bias at each stage of a recommender system. Reducing bias in our recommender systems is crucial to successfully recommending dream jobs to hundreds of millions members worldwide, while being true to LinkedIn's vision: "To create economic opportunity for every member of the global workforce".

* Grace Hopper Conference, GHC 2017 
* Accepted and presented at Grace Hopper Conference, GHC 2017 

  Access Paper or Ask Questions

Performing Hybrid Recommendation in Intermodal Transportation-the FTMarket System's Recommendation Module

Sep 12, 2009
Alexis Lazanas

Diverse recommendation techniques have been already proposed and encapsulated into several e-business applications, aiming to perform a more accurate evaluation of the existing information and accordingly augment the assistance provided to the users involved. This paper reports on the development and integration of a recommendation module in an agent-based transportation transactions management system. The module is built according to a novel hybrid recommendation technique, which combines the advantages of collaborative filtering and knowledge-based approaches. The proposed technique and supporting module assist customers in considering in detail alternative transportation transactions that satisfy their requests, as well as in evaluating completed transactions. The related services are invoked through a software agent that constructs the appropriate knowledge rules and performs a synthesis of the recommendation policy.

* A. Lazanas"Performing Hybrid Recommendation in Intermodal Transportation-the FTMarket System's Recommendation Module ",International Journal of Computer Science Issues (IJCSI), Volume 3, pp24-34, August 2009 
* International Journal of Computer Science Issues (IJCSI), Volume 3, pp24-34, August 2009 

  Access Paper or Ask Questions

Estimating Probabilities in Recommendation Systems

Dec 02, 2010
Mingxuan Sun, Guy Lebanon, Paul Kidwell

Recommendation systems are emerging as an important business application with significant economic impact. Currently popular systems include Amazon's book recommendations, Netflix's movie recommendations, and Pandora's music recommendations. In this paper we address the problem of estimating probabilities associated with recommendation system data using non-parametric kernel smoothing. In our estimation we interpret missing items as randomly censored observations and obtain efficient computation schemes using combinatorial properties of generating functions. We demonstrate our approach with several case studies involving real world movie recommendation data. The results are comparable with state-of-the-art techniques while also providing probabilistic preference estimates outside the scope of traditional recommender systems.


  Access Paper or Ask Questions

Value-Aware Item Weighting for Long-Tail Recommendation

Feb 15, 2018
Himan Abdollahpouri, Robin Burke, Bamshad Mobasher

Many recommender systems suffer from the popularity bias problem: popular items are being recommended frequently while less popular, niche products, are recommended rarely if not at all. However, those ignored products are exactly the products that businesses need to find customers for and their recommendations would be more beneficial. In this paper, we examine an item weighting approach to improve long-tail recommendation. Our approach works as a simple yet powerful add-on to existing recommendation algorithms for making a tunable trade-off between accuracy and long-tail coverage.


  Access Paper or Ask Questions