Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Machine learning and artificial intelligence conferences such as NeurIPS and ICML now regularly receive tens of thousands of submissions, posing significant challenges to maintaining the quality and consistency of the peer review process. This challenge is particularly acute for best paper awards, which are an important part of the peer review process, yet whose selection has increasingly become a subject of debate in recent years. In this paper, we introduce an author-assisted mechanism to facilitate the selection of best paper awards. Our method employs the Isotonic Mechanism for eliciting authors' assessments of their own submissions in the form of a ranking, which is subsequently utilized to adjust the raw review scores for optimal estimation of the submissions' ground-truth quality. We demonstrate that authors are incentivized to report truthfully when their utility is a convex additive function of the adjusted scores, and we validate this convexity assumption for best paper awards using publicly accessible review data of ICLR from 2019 to 2023 and NeurIPS from 2021 to 2023. Crucially, in the special case where an author has a single quota -- that is, may nominate only one paper -- we prove that truthfulness holds even when the utility function is merely nondecreasing and additive. This finding represents a substantial relaxation of the assumptions required in prior work. For practical implementation, we extend our mechanism to accommodate the common scenario of overlapping authorship. Finally, simulation results demonstrate that our mechanism significantly improves the quality of papers selected for awards.
Peer review is at the heart of modern science. As submission numbers rise and research communities grow, the decline in review quality is a popular narrative and a common concern. Yet, is it true? Review quality is difficult to measure, and the ongoing evolution of reviewing practices makes it hard to compare reviews across venues and time. To address this, we introduce a new framework for evidence-based comparative study of review quality and apply it to major AI and machine learning conferences: ICLR, NeurIPS and *ACL. We document the diversity of review formats and introduce a new approach to review standardization. We propose a multi-dimensional schema for quantifying review quality as utility to editors and authors, coupled with both LLM-based and lightweight measurements. We study the relationships between measurements of review quality, and its evolution over time. Contradicting the popular narrative, our cross-temporal analysis reveals no consistent decline in median review quality across venues and years. We propose alternative explanations, and outline recommendations to facilitate future empirical studies of review quality.
Popularity bias is a pervasive challenge in recommender systems, where a few popular items dominate attention while the majority of less popular items remain underexposed. This imbalance can reduce recommendation quality and lead to unfair item exposure. Although existing mitigation methods address this issue to some extent, they often lack transparency in how they operate. In this paper, we propose a post-hoc approach, PopSteer, that leverages a Sparse Autoencoder (SAE) to both interpret and mitigate popularity bias in recommendation models. The SAE is trained to replicate a trained model's behavior while enabling neuron-level interpretability. By introducing synthetic users with strong preferences for either popular or unpopular items, we identify neurons encoding popularity signals through their activation patterns. We then steer recommendations by adjusting the activations of the most biased neurons. Experiments on three public datasets with a sequential recommendation model demonstrate that PopSteer significantly enhances fairness with minimal impact on accuracy, while providing interpretable insights and fine-grained control over the fairness-accuracy trade-off.
User interactions on e-commerce platforms are inherently diverse, involving behaviors such as clicking, favoriting, adding to cart, and purchasing. The transitions between these behaviors offer valuable insights into user-item interactions, serving as a key signal for un- derstanding evolving preferences. Consequently, there is growing interest in leveraging multi-behavior data to better capture user intent. Recent studies have explored sequential modeling of multi- behavior data, many relying on transformer-based architectures with polynomial time complexity. While effective, these approaches often incur high computational costs, limiting their applicability in large-scale industrial systems with long user sequences. To address this challenge, we propose the Transition-Aware Graph Attention Network (TGA), a linear-complexity approach for modeling multi-behavior transitions. Unlike traditional trans- formers that treat all behavior pairs equally, TGA constructs a structured sparse graph by identifying informative transitions from three perspectives: (a) item-level transitions, (b) category-level transitions, and (c) neighbor-level transitions. Built upon the structured graph, TGA employs a transition-aware graph Attention mechanism that jointly models user-item interactions and behav- ior transition types, enabling more accurate capture of sequential patterns while maintaining computational efficiency. Experiments show that TGA outperforms all state-of-the-art models while sig- nificantly reducing computational cost. Notably, TGA has been deployed in a large-scale industrial production environment, where it leads to impressive improvements in key business metrics.
Graph-based social recommendation (SocialRec) has emerged as a powerful extension of graph collaborative filtering (GCF), which leverages graph neural networks (GNNs) to capture multi-hop collaborative signals from user-item interactions. These methods enrich user representations by incorporating social network information into GCF, thereby integrating additional collaborative signals from social relations. However, existing GCF and graph-based SocialRec approaches face significant challenges: they incur high computational costs and suffer from limited scalability due to the large number of parameters required to assign explicit embeddings to all users and items. In this work, we propose PULSE (Parameter-efficient User representation Learning with Social Knowledge), a framework that addresses this limitation by constructing user representations from socially meaningful signals without creating an explicit learnable embedding for each user. PULSE reduces the parameter size by up to 50% compared to the most lightweight GCF baseline. Beyond parameter efficiency, our method achieves state-of-the-art performance, outperforming 13 GCF and graph-based social recommendation baselines across varying levels of interaction sparsity, from cold-start to highly active users, through a time- and memory-efficient modeling process.
Semantic ID learning is a key interface in Generative Recommendation (GR) models, mapping items to discrete identifiers grounded in side information, most commonly via a pretrained text encoder. However, these text encoders are primarily optimized for well-formed natural language. In real-world recommendation data, item descriptions are often symbolic and attribute-centric, containing numerals, units, and abbreviations. These text encoders can break these signals into fragmented tokens, weakening semantic coherence and distorting relationships among attributes. Worse still, when moving to multimodal GR, relying on standard text encoders introduces an additional obstacle: text and image embeddings often exhibit mismatched geometric structures, making cross-modal fusion less effective and less stable. In this paper, we revisit representation design for Semantic ID learning by treating text as a visual signal. We conduct a systematic empirical study of OCR-based text representations, obtained by rendering item descriptions into images and encoding them with vision-based OCR models. Experiments across four datasets and two generative backbones show that OCR-text consistently matches or surpasses standard text embeddings for Semantic ID learning in both unimodal and multimodal settings. Furthermore, we find that OCR-based Semantic IDs remain robust under extreme spatial-resolution compression, indicating strong robustness and efficiency in practical deployments.
Learning Path Recommendation (LPR) aims to generate personalized sequences of learning items that maximize long-term learning effect while respecting pedagogical principles and operational constraints. Although large language models (LLMs) offer rich semantic understanding for free-form recommendation, applying them to long-horizon LPR is challenging due to (i) misalignment with pedagogical objectives such as the Zone of Proximal Development (ZPD) under sparse, delayed feedback, (ii) scarce and costly expert demonstrations, and (iii) multi-objective interactions among learning effect, difficulty scheduling, length controllability, and trajectory diversity. To address these issues, we propose IB-GRPO (Indicator-Based Group Relative Policy Optimization), an indicator-guided alignment approach for LLM-based LPR. To mitigate data scarcity, we construct hybrid expert demonstrations via Genetic Algorithm search and teacher RL agents and warm-start the LLM with supervised fine-tuning. Building on this warm-start, we design a within-session ZPD alignment score for difficulty scheduling. IB-GRPO then uses the $I_{ε+}$ dominance indicator to compute group-relative advantages over multiple objectives, avoiding manual scalarization and improving Pareto trade-offs. Experiments on ASSIST09 and Junyi using the KES simulator with a Qwen2.5-7B backbone show consistent improvements over representative RL and LLM baselines.
The design-build-test cycle is essential for innovation, but physical prototyping is often slow and expensive. Although physics-based simulation and strategic prototyping can reduce cost, meaningful evaluation is frequently constrained until an integrated prototype is built. This paper investigates whether a generative pretrained transformer (GPT) can predict information typically obtained through prototyping, including cost, performance, and perceived usability. We introduce a retrieval-augmented generation (RAG) method to emulate design feedback using OpenAI GPT-4o, grounded in prototyping data scraped from Instructables.com to increase access to relevant precedent. Two studies are reported. First, a controlled experiment compares GPT-RAG and human designers, who receive design sketches and predict cost, performance, and usability; predictions are evaluated against ground-truth results from physical prototypes. Second, we report an applied demonstration in which a physical prototype is produced from GPT-RAG recommendations and compared with a commercial baseline and a topology-optimized design. Results show that GPT-RAG provides more accurate cost and performance estimates than individual or crowd human estimates, while yielding comparable usability insights; the GPT-RAG-informed prototype also outperforms both comparison prototypes. Repeated querying with response averaging significantly improves accuracy, suggesting that LLMs can emulate crowd aggregation effects consistent with the law of large numbers.
This report distills the discussions and recommendations from the NSF Workshop on AI for Electronic Design Automation (EDA), held on December 10, 2024 in Vancouver alongside NeurIPS 2024. Bringing together experts across machine learning and EDA, the workshop examined how AI-spanning large language models (LLMs), graph neural networks (GNNs), reinforcement learning (RL), neurosymbolic methods, etc.-can facilitate EDA and shorten design turnaround. The workshop includes four themes: (1) AI for physical synthesis and design for manufacturing (DFM), discussing challenges in physical manufacturing process and potential AI applications; (2) AI for high-level and logic-level synthesis (HLS/LLS), covering pragma insertion, program transformation, RTL code generation, etc.; (3) AI toolbox for optimization and design, discussing frontier AI developments that could potentially be applied to EDA tasks; and (4) AI for test and verification, including LLM-assisted verification tools, ML-augmented SAT solving, security/reliability challenges, etc. The report recommends NSF to foster AI/EDA collaboration, invest in foundational AI for EDA, develop robust data infrastructures, promote scalable compute infrastructure, and invest in workforce development to democratize hardware design and enable next-generation hardware systems. The workshop information can be found on the website https://ai4eda-workshop.github.io/.
Sepsis remains one of the leading causes of mortality in intensive care units, where timely and accurate treatment decisions can significantly impact patient outcomes. In this work, we propose an interpretable decision support framework. Our system integrates four core components: (1) a clustering-based stratification module that categorizes patients into low, intermediate, and high-risk groups upon ICU admission, using clustering with statistical validation; (2) a synthetic data augmentation pipeline leveraging variational autoencoders (VAE) and diffusion models to enrich underrepresented trajectories such as fluid or vasopressor administration; (3) an offline reinforcement learning (RL) agent trained using Advantage Weighted Regression (AWR) with a lightweight attention encoder and supported by an ensemble models for conservative, safety-aware treatment recommendations; and (4) a rationale generation module powered by a multi-modal large language model (LLM), which produces natural-language justifications grounded in clinical context and retrieved expert knowledge. Evaluated on the MIMIC-III and eICU datasets, our approach achieves high treatment accuracy while providing clinicians with interpretable and robust policy recommendations.