What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
Aug 18, 2025
Abstract:As urban aerial mobility (UAM) infrastructure development accelerates globally, cities like Shenzhen are planning large-scale vertiport networks (e.g., 1,200+ facilities by 2026). Existing planning frameworks remain inadequate for this complexity due to historical limitations in data granularity and real-world applicability. This paper addresses these gaps by first proposing the Capacitated Dynamic Maximum Covering Location Problem (CDMCLP), a novel optimization framework that simultaneously models urban-scale spatial-temporal demand, heterogeneous user behaviors, and infrastructure capacity constraints. Building on this foundation, we introduce an Integrated Planning Recommendation System that combines CDMCLP with socio-economic factors and dynamic clustering initialization. This system leverages adaptive parameter tuning based on empirical user behavior to generate practical planning solutions. Validation in a Chinese center city demonstrates the effectiveness of the new optimization framework and recommendation system. Under the evaluation and optimization of CDMCLP, the quantitative performance of traditional location methods are exposed and can be improved by 38\%--52\%, while the recommendation system shows user-friendliness and the effective integration of complex elements. By integrating mathematical rigor with practical implementation considerations, this hybrid approach bridges the gap between theoretical location modeling and real-world UAM infrastructure planning, offering municipalities a pragmatic tool for vertiport network design.
* 10 pages
Via

Aug 18, 2025
Abstract:Recent advances in large language models (LLMs) have enabled realistic user simulators for developing and evaluating recommender systems (RSs). However, existing LLM-based simulators for RSs face two major limitations: (1) static and single-step prompt-based inference that leads to inaccurate and incomplete user profile construction; (2) unrealistic and single-round recommendation-feedback interaction pattern that fails to capture real-world scenarios. To address these limitations, we propose DGDPO (Diagnostic-Guided Dynamic Profile Optimization), a novel framework that constructs user profile through a dynamic and iterative optimization process to enhance the simulation fidelity. Specifically, DGDPO incorporates two core modules within each optimization loop: firstly, a specialized LLM-based diagnostic module, calibrated through our novel training strategy, accurately identifies specific defects in the user profile. Subsequently, a generalized LLM-based treatment module analyzes the diagnosed defect and generates targeted suggestions to refine the profile. Furthermore, unlike existing LLM-based user simulators that are limited to single-round interactions, we are the first to integrate DGDPO with sequential recommenders, enabling a bidirectional evolution where user profiles and recommendation strategies adapt to each other over multi-round interactions. Extensive experiments conducted on three real-world datasets demonstrate the effectiveness of our proposed framework.
Via

Aug 18, 2025
Abstract:Developing large language models is expensive and involves making decisions with small experiments, typically by evaluating on large, multi-task evaluation suites. In this work, we analyze specific properties which make a benchmark more reliable for such decisions, and interventions to design higher-quality evaluation benchmarks. We introduce two key metrics that show differences in current benchmarks: signal, a benchmark's ability to separate better models from worse models, and noise, a benchmark's sensitivity to random variability between training steps. We demonstrate that benchmarks with a better signal-to-noise ratio are more reliable when making decisions at small scale, and those with less noise have lower scaling law prediction error. These results suggest that improving signal or noise will lead to more useful benchmarks, so we introduce three interventions designed to directly affect signal or noise. For example, we propose that switching to a metric that has better signal and noise (e.g., perplexity rather than accuracy) leads to better reliability and improved scaling law error. We also find that filtering noisy subtasks, to improve an aggregate signal-to-noise ratio, leads to more reliable multi-task evaluations. We also find that averaging the output of a model's intermediate checkpoints to reduce noise leads to consistent improvements. We conclude by recommending that those creating new benchmarks, or selecting which existing benchmarks to use, aim for high signal and low noise. We use 30 benchmarks for these experiments, and 375 open-weight language models from 60M to 32B parameters, resulting in a new, publicly available dataset of 900K evaluation benchmark results, totaling 200M instances.
Via

Aug 18, 2025
Abstract:We propose a data-driven and context-aware approach to bootstrap trustworthiness of homogeneous Internet of Things (IoT) services in Mobile Edge Computing (MEC) based industrial IoT (IIoT) systems. The proposed approach addresses key limitations in adapting existing trust bootstrapping approaches into MEC-based IIoT systems. These key limitations include, the lack of opportunity for a service consumer to interact with a lesser-known service over a prolonged period of time to get a robust measure of its trustworthiness, inability of service consumers to consistently interact with their peers to receive reliable recommendations of the trustworthiness of a lesser-known service as well as the impact of uneven context parameters in different MEC environments causing uneven trust environments for trust evaluation. In addition, the proposed approach also tackles the problem of data sparsity via enabling knowledge sharing among different MEC environments within a given MEC topology. To verify the effectiveness of the proposed approach, we carried out a comprehensive evaluation on two real-world datasets suitably adjusted to exhibit the context-dependent trust information accumulated in MEC environments within a given MEC topology. The experimental results affirmed the effectiveness of our approach and its suitability to bootstrap trustworthiness of services in MEC-based IIoT systems.
* 15 pages
Via

Aug 18, 2025
Abstract:Brain-computer interfaces (BCIs) show enormous potential for advancing personalized medicine. However, BCIs also introduce new avenues for cyber-attacks or security compromises. In this article, we analyze the problem and make recommendations for device manufacturers to better secure devices and to help regulators understand where more guidance is needed to protect patient safety and data confidentiality. Device manufacturers should implement the prior suggestions in their BCI products. These recommendations help protect BCI users from undue risks, including compromised personal health and genetic information, unintended BCI-mediated movement, and many other cybersecurity breaches. Regulators should mandate non-surgical device update methods, strong authentication and authorization schemes for BCI software modifications, encryption of data moving to and from the brain, and minimize network connectivity where possible. We also design a hypothetical, average-case threat model that identifies possible cybersecurity threats to BCI patients and predicts the likeliness of risk for each category of threat. BCIs are at less risk of physical compromise or attack, but are vulnerable to remote attack; we focus on possible threats via network paths to BCIs and suggest technical controls to limit network connections.
* Neuroethics 18, 34 (2025)
Via

Aug 14, 2025
Abstract:Medication recommendation is a crucial task for assisting physicians in making timely decisions from longitudinal patient medical records. However, real-world EHR data present significant challenges due to the presence of rarely observed medical entities and incomplete records that may not fully capture the clinical ground truth. While data-driven models trained on longitudinal Electronic Health Records often achieve strong empirical performance, they struggle to generalize under missing or novel conditions, largely due to their reliance on observed co-occurrence patterns. To address these issues, we propose Hierarchical Ontology and Network Refinement for Robust Medication Recommendation (HiRef), a unified framework that combines two complementary structures: (i) the hierarchical semantics encoded in curated medical ontologies, and (ii) refined co-occurrence patterns derived from real-world EHRs. We embed ontology entities in hyperbolic space, which naturally captures tree-like relationships and enables knowledge transfer through shared ancestors, thereby improving generalizability to unseen codes. To further improve robustness, we introduce a prior-guided sparse regularization scheme that refines the EHR co-occurrence graph by suppressing spurious edges while preserving clinically meaningful associations. Our model achieves strong performance on EHR benchmarks (MIMIC-III and MIMIC-IV) and maintains high accuracy under simulated unseen-code settings. Extensive experiments with comprehensive ablation studies demonstrate HiRef's resilience to unseen medical codes, supported by in-depth analyses of the learned sparsified graph structure and medical code embeddings.
Via

Aug 14, 2025
Abstract:Federated recommender systems have emerged as a promising privacy-preserving paradigm, enabling personalized recommendation services without exposing users' raw data. By keeping data local and relying on a central server to coordinate training across distributed clients, FedRSs protect user privacy while collaboratively learning global models. However, most existing FedRS frameworks adopt fully random client selection strategy in each training round, overlooking the statistical heterogeneity of user data arising from diverse preferences and behavior patterns, thereby resulting in suboptimal model performance. While some client selection strategies have been proposed in the broader federated learning literature, these methods are typically designed for generic tasks and fail to address the unique challenges of recommendation scenarios, such as expensive contribution evaluation due to the large number of clients, and sparse updates resulting from long-tail item distributions. To bridge this gap, we propose ProxyRL-FRS, a proxy model-guided reinforcement learning framework tailored for client selection in federated recommendation. Specifically, we first introduce ProxyNCF, a dual-branch model deployed on each client, which augments standard Neural Collaborative Filtering with an additional proxy model branch that provides lightweight contribution estimation, thus eliminating the need for expensive per-round local training traditionally required to evaluate a client's contribution. Furthermore, we design a staleness-aware SA reinforcement learning agent that selects clients based on the proxy-estimated contribution, and is guided by a reward function balancing recommendation accuracy and embedding staleness, thereby enriching the update coverage of item embeddings. Experiments conducted on public recommendation datasets demonstrate the effectiveness of ProxyRL-FRS.
* Under review
Via

Aug 14, 2025
Abstract:Recommender systems in concert with Large Language Models (LLMs) present promising avenues for generating semantically-informed recommendations. However, LLM-based recommenders exhibit a tendency to overemphasize semantic correlations within users' interaction history. When taking pretrained collaborative ID embeddings as input, LLM-based recommenders progressively weaken the inherent collaborative signals as the embeddings propagate through LLM backbones layer by layer, as opposed to traditional Transformer-based sequential models in which collaborative signals are typically preserved or even enhanced for state-of-the-art performance. To address this limitation, we introduce FreLLM4Rec, an approach designed to balance semantic and collaborative information from a spectral perspective. Item embeddings that incorporate both semantic and collaborative information are first purified using a Global Graph Low-Pass Filter (G-LPF) to preliminarily remove irrelevant high-frequency noise. Temporal Frequency Modulation (TFM) then actively preserves collaborative signal layer by layer. Note that the collaborative preservation capability of TFM is theoretically guaranteed by establishing a connection between the optimal but hard-to-implement local graph fourier filters and the suboptimal yet computationally efficient frequency-domain filters. Extensive experiments on four benchmark datasets demonstrate that FreLLM4Rec successfully mitigates collaborative signal attenuation and achieves competitive performance, with improvements of up to 8.00\% in NDCG@10 over the best baseline. Our findings provide insights into how LLMs process collaborative information and offer a principled approach for improving LLM-based recommendation systems.
* 12 pages, 8 figures
Via

Aug 14, 2025
Abstract:While aspect-based sentiment analysis (ABSA) has made substantial progress, challenges remain for low-resource languages, which are often overlooked in favour of English. Current cross-lingual ABSA approaches focus on limited, less complex tasks and often rely on external translation tools. This paper introduces a novel approach using constrained decoding with sequence-to-sequence models, eliminating the need for unreliable translation tools and improving cross-lingual performance by 5\% on average for the most complex task. The proposed method also supports multi-tasking, which enables solving multiple ABSA tasks with a single model, with constrained decoding boosting results by more than 10\%. We evaluate our approach across seven languages and six ABSA tasks, surpassing state-of-the-art methods and setting new benchmarks for previously unexplored tasks. Additionally, we assess large language models (LLMs) in zero-shot, few-shot, and fine-tuning scenarios. While LLMs perform poorly in zero-shot and few-shot settings, fine-tuning achieves competitive results compared to smaller multilingual models, albeit at the cost of longer training and inference times. We provide practical recommendations for real-world applications, enhancing the understanding of cross-lingual ABSA methodologies. This study offers valuable insights into the strengths and limitations of cross-lingual ABSA approaches, advancing the state-of-the-art in this challenging research domain.
Via

Aug 14, 2025
Abstract:Ranking product recommendations to optimize for a high click-through rate (CTR) or for high conversion, such as add-to-cart rate (ACR) and Order-Submit-Rate (OSR, view-to-purchase conversion) are standard practices in e-commerce. Optimizing for CTR appears like a straightforward choice: Training data (i.e., click data) are simple to collect and often available in large quantities. Additionally, CTR is used far beyond e-commerce, making it a generalist, easily implemented option. ACR and OSR, on the other hand, are more directly linked to a shop's business goals, such as the Gross Merchandise Value (GMV). In this paper, we compare the effects of using either of these objectives using an online A/B test. Among our key findings, we demonstrate that in our shops, optimizing for OSR produces a GMV uplift more than five times larger than when optimizing for CTR, without sacrificing new product discovery. Our results also provide insights into the different feature importances for each of the objectives.
Via
