What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
Jul 03, 2025
Abstract:Recommendation systems have become essential in modern music streaming platforms, shaping how users discover and engage with songs. One common approach in recommendation systems is collaborative filtering, which suggests content based on the preferences of users with similar listening patterns to the target user. However, this method is less effective on media where interactions are sparse. Music is one such medium, since the average user of a music streaming service will never listen to the vast majority of tracks. Due to this sparsity, there are several challenges that have to be addressed with other methods. This review examines the current state of research in addressing these challenges, with an emphasis on the role of content filtering in mitigating biases inherent in collaborative filtering approaches. We explore various methods of song classification for content filtering, including lyrical analysis using Large Language Models (LLMs) and audio signal processing techniques. Additionally, we discuss the potential conflicts between these different analysis methods and propose avenues for resolving such discrepancies.
* 13 pages and 9 figures
Via

Jul 03, 2025
Abstract:In non-truthful auctions such as first-price and all-pay auctions, the independent strategic behaviors of bidders, with the corresponding equilibrium notion -- Bayes Nash equilibria -- are notoriously difficult to characterize and can cause undesirable outcomes. An alternative approach to designing better auction systems is to coordinate the bidders: let a mediator make incentive-compatible recommendations of correlated bidding strategies to the bidders, namely, implementing a Bayes correlated equilibrium (BCE). The implementation of BCE, however, requires knowledge of the distribution of bidders' private valuations, which is often unavailable. We initiate the study of the sample complexity of learning Bayes correlated equilibria in non-truthful auctions. We prove that the BCEs in a large class of non-truthful auctions, including first-price and all-pay auctions, can be learned with a polynomial number $\tilde O(\frac{n}{\varepsilon^2})$ of samples from the bidders' value distributions. Our technique is a reduction to the problem of estimating bidders' expected utility from samples, combined with an analysis of the pseudo-dimension of the class of all monotone bidding strategies of bidders.
Via

Jul 03, 2025
Abstract:The idea of calibrated recommendations is that the properties of the items that are suggested to users should match the distribution of their individual past preferences. Calibration techniques are therefore helpful to ensure that the recommendations provided to a user are not limited to a certain subset of the user's interests. Over the past few years, we have observed an increasing number of research works that use calibration for different purposes, including questions of diversity, biases, and fairness. In this work, we provide a survey on the recent developments in the area of calibrated recommendations. We both review existing technical approaches for calibration and provide an overview on empirical and analytical studies on the effectiveness of calibration for different use cases. Furthermore, we discuss limitations and common challenges when implementing calibration in practice.
Via

Jul 03, 2025
Abstract:Log analysis is a relevant research field in cybersecurity as they can provide a source of information for the detection of threats to networks and systems. This paper presents a pipeline to use fine-tuned Large Language Models (LLMs) for anomaly detection and mitigation recommendation using IoT security logs. Utilizing classical machine learning classifiers as a baseline, three open-source LLMs are compared for binary and multiclass anomaly detection, with three strategies: zero-shot, few-shot prompting and fine-tuning using an IoT dataset. LLMs give better results on multi-class attack classification than the corresponding baseline models. By mapping detected threats to MITRE CAPEC, defining a set of IoT-specific mitigation actions, and fine-tuning the models with those actions, the models are able to provide a combined detection and recommendation guidance.
Via

Jul 03, 2025
Abstract:Preference alignment has achieved greater success on Large Language Models (LLMs) and drawn broad interest in recommendation research. Existing preference alignment methods for recommendation either require explicit reward modeling or only support pairwise preference comparison. The former directly increases substantial computational costs, while the latter hinders training efficiency on negative samples. Moreover, no existing effort has explored preference alignment solutions for tail-item recommendation. To bridge the above gaps, we propose LPO4Rec, which extends the Bradley-Terry model from pairwise comparison to listwise comparison, to improve the efficiency of model training. Specifically, we derive a closed form optimal policy to enable more efficient and effective training without explicit reward modeling. We also present an adaptive negative sampling and reweighting strategy to prioritize tail items during optimization and enhance performance in tail-item recommendations. Besides, we theoretically prove that optimizing the listwise preference optimization (LPO) loss is equivalent to maximizing the upper bound of the optimal reward. Our experiments on three public datasets show that our method outperforms 10 baselines by a large margin, achieving up to 50% performance improvement while reducing 17.9% GPU memory usage when compared with direct preference optimization (DPO) in tail-item recommendation. Our code is available at https://github.com/Yuhanleeee/LPO4Rec.
Via

Jul 03, 2025
Abstract:Graphical Abstracts (GAs) play a crucial role in visually conveying the key findings of scientific papers. While recent research has increasingly incorporated visual materials such as Figure 1 as de facto GAs, their potential to enhance scientific communication remains largely unexplored. Moreover, designing effective GAs requires advanced visualization skills, creating a barrier to their widespread adoption. To tackle these challenges, we introduce SciGA-145k, a large-scale dataset comprising approximately 145,000 scientific papers and 1.14 million figures, explicitly designed for supporting GA selection and recommendation as well as facilitating research in automated GA generation. As a preliminary step toward GA design support, we define two tasks: 1) Intra-GA recommendation, which identifies figures within a given paper that are well-suited to serve as GAs, and 2) Inter-GA recommendation, which retrieves GAs from other papers to inspire the creation of new GAs. We provide reasonable baseline models for these tasks. Furthermore, we propose Confidence Adjusted top-1 ground truth Ratio (CAR), a novel recommendation metric that offers a fine-grained analysis of model behavior. CAR addresses limitations in traditional ranking-based metrics by considering cases where multiple figures within a paper, beyond the explicitly labeled GA, may also serve as GAs. By unifying these tasks and metrics, our SciGA-145k establishes a foundation for advancing visual scientific communication while contributing to the development of AI for Science.
* 21 pages, 15 figures, 4 tables. Project Page:
https://iyatomilab.github.io/SciGA/
Via

Jul 02, 2025
Abstract:Federated recommendation (FedRec) preserves user privacy by enabling decentralized training of personalized models, but this architecture is inherently vulnerable to adversarial attacks. Significant research has been conducted on targeted attacks in FedRec systems, motivated by commercial and social influence considerations. However, much of this work has largely overlooked the differential robustness of recommendation models. Moreover, our empirical findings indicate that existing targeted attack methods achieve only limited effectiveness in Federated Sequential Recommendation(FSR) tasks. Driven by these observations, we focus on investigating targeted attacks in FSR and propose a novel dualview attack framework, named DV-FSR. This attack method uniquely combines a sampling-based explicit strategy with a contrastive learning-based implicit gradient strategy to orchestrate a coordinated attack. Additionally, we introduce a specific defense mechanism tailored for targeted attacks in FSR, aiming to evaluate the mitigation effects of the attack method we proposed. Extensive experiments validate the effectiveness of our proposed approach on representative sequential models. Our codes are publicly available.
* 10 pages. arXiv admin note: substantial text overlap with
arXiv:2409.07500; text overlap with arXiv:2212.05399 by other authors
Via

Jul 02, 2025
Abstract:As AI integrates in various types of human writing, calls for transparency around AI assistance are growing. However, if transparency operates on uneven ground and certain identity groups bear a heavier cost for being honest, then the burden of openness becomes asymmetrical. This study investigates how AI disclosure statement affects perceptions of writing quality, and whether these effects vary by the author's race and gender. Through a large-scale controlled experiment, both human raters (n = 1,970) and LLM raters (n = 2,520) evaluated a single human-written news article while disclosure statements and author demographics were systematically varied. This approach reflects how both human and algorithmic decisions now influence access to opportunities (e.g., hiring, promotion) and social recognition (e.g., content recommendation algorithms). We find that both human and LLM raters consistently penalize disclosed AI use. However, only LLM raters exhibit demographic interaction effects: they favor articles attributed to women or Black authors when no disclosure is present. But these advantages disappear when AI assistance is revealed. These findings illuminate the complex relationships between AI disclosure and author identity, highlighting disparities between machine and human evaluation patterns.
* Presented at CHIWORK 2025 Workshop on Generative AI Disclosure,
Ownership, and Accountability in Co-Creative Domains
Via

Jul 02, 2025
Abstract:Graph federated recommendation systems offer a privacy-preserving alternative to traditional centralized recommendation architectures, which often raise concerns about data security. While federated learning enables personalized recommendations without exposing raw user data, existing aggregation methods overlook the unique properties of user embeddings in this setting. Indeed, traditional aggregation methods fail to account for their complexity and the critical role of user similarity in recommendation effectiveness. Moreover, evolving user interactions require adaptive aggregation while preserving the influence of high-relevance anchor users (the primary users before expansion in graph-based frameworks). To address these limitations, we introduce Dist-FedAvg, a novel distance-based aggregation method designed to enhance personalization and aggregation efficiency in graph federated learning. Our method assigns higher aggregation weights to users with similar embeddings, while ensuring that anchor users retain significant influence in local updates. Empirical evaluations on multiple datasets demonstrate that Dist-FedAvg consistently outperforms baseline aggregation techniques, improving recommendation accuracy while maintaining seamless integration into existing federated learning frameworks.
* 17 pages, 5 figures
Via

Jul 02, 2025
Abstract:Large language models (LLMs) are rapidly evolving from passive engines of text generation into agentic entities that can plan, remember, invoke external tools, and co-operate with one another. This perspective paper investigates how such LLM agents (and societies thereof) can transform the design space of recommender systems. We introduce a unified formalism that (i) models an individual agent as a tuple comprising its language core, tool set, and hierarchical memory, and (ii) captures a multi-agent recommender as a triple of agents, shared environment, and communication protocol. Within this framework, we present four end-to-end use cases-interactive party planning, synthetic user-simulation for offline evaluation, multi-modal furniture recommendation, and brand-aligned explanation generation-each illustrating a distinct capability unlocked by agentic orchestration. We then surface five cross-cutting challenge families: protocol complexity, scalability, hallucination and error propagation, emergent misalignment (including covert collusion), and brand compliance. For each, we formalize the problem, review nascent mitigation strategies, and outline open research questions. The result is both a blueprint and an agenda: a blueprint that shows how memory-augmented, tool-using LLM agents can be composed into robust recommendation pipelines, and an agenda inviting the RecSys community to develop benchmarks, theoretical guarantees, and governance tools that keep pace with this new degree of autonomy. By unifying agentic abstractions with recommender objectives, the paper lays the groundwork for the next generation of personalized, trustworthy, and context-rich recommendation services.
Via
