What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
Feb 06, 2025
Abstract:The proliferation of NLP-powered language technologies, AI-based natural language generation models, and English as a mainstream means of communication among both native and non-native speakers make the output of AI-powered tools especially intriguing to linguists. This paper investigates how Grammarly and ChatGPT affect the English language regarding wordiness vs. conciseness. A case study focusing on the purpose subordinator in order to is presented to illustrate the way in which Grammarly and ChatGPT recommend shorter grammatical structures instead of longer and more elaborate ones. Although the analysed sentences were produced by native speakers, are perfectly correct, and were extracted from a language corpus of contemporary English, both Grammarly and ChatGPT suggest more conciseness and less verbosity, even for relatively short sentences. The present article argues that technologies such as Grammarly not only mirror language change but also have the potential to facilitate or accelerate it.
* Procesamiento del Lenguaje Natural, 2023, pp. 205-214
* 10 pages, article
Via

Feb 06, 2025
Abstract:Rating aggregation plays a crucial role in various fields, such as product recommendations, hotel rankings, and teaching evaluations. However, traditional averaging methods can be affected by participation bias, where some raters do not participate in the rating process, leading to potential distortions. In this paper, we consider a robust rating aggregation task under the participation bias. We assume that raters may not reveal their ratings with a certain probability depending on their individual ratings, resulting in partially observed samples. Our goal is to minimize the expected squared loss between the aggregated ratings and the average of all underlying ratings (possibly unobserved) in the worst-case scenario. We focus on two settings based on whether the sample size (i.e. the number of raters) is known. In the first setting, where the sample size is known, we propose an aggregator, named as the Balanced Extremes Aggregator. It estimates unrevealed ratings with a balanced combination of extreme ratings. When the sample size is unknown, we derive another aggregator, the Polarizing-Averaging Aggregator, which becomes optimal as the sample size grows to infinity. Numerical results demonstrate the superiority of our proposed aggregators in mitigating participation bias, compared to simple averaging and the spectral method. Furthermore, we validate the effectiveness of our aggregators on a real-world dataset.
* In Proceedings of the ACM Web Conference 2025,15 pages
Via

Feb 06, 2025
Abstract:Knowledge Graph-based recommendations have gained significant attention due to their ability to leverage rich semantic relationships. However, constructing and maintaining Knowledge Graphs (KGs) is resource-intensive, and the accuracy of KGs can suffer from noisy, outdated, or irrelevant triplets. Recent advancements in Large Language Models (LLMs) offer a promising way to improve the quality and relevance of KGs for recommendation tasks. Despite this, integrating LLMs into KG-based systems presents challenges, such as efficiently augmenting KGs, addressing hallucinations, and developing effective joint learning methods. In this paper, we propose the Confidence-aware KG-based Recommendation Framework with LLM Augmentation (CKG-LLMA), a novel framework that combines KGs and LLMs for recommendation task. The framework includes: (1) an LLM-based subgraph augmenter for enriching KGs with high-quality information, (2) a confidence-aware message propagation mechanism to filter noisy triplets, and (3) a dual-view contrastive learning method to integrate user-item interactions and KG data. Additionally, we employ a confidence-aware explanation generation process to guide LLMs in producing realistic explanations for recommendations. Finally, extensive experiments demonstrate the effectiveness of CKG-LLMA across multiple public datasets.
Via

Feb 06, 2025
Abstract:Visualization recommendation aims to enable rapid visual analysis of massive datasets. In real-world scenarios, it is essential to quickly gather and comprehend user preferences to cover users from diverse backgrounds, including varying skill levels and analytical tasks. Previous approaches to personalized visualization recommendations are non-interactive and rely on initial user data for new users. As a result, these models cannot effectively explore options or adapt to real-time feedback. To address this limitation, we propose an interactive personalized visualization recommendation (PVisRec) system that learns on user feedback from previous interactions. For more interactive and accurate recommendations, we propose Hier-SUCB, a contextual combinatorial semi-bandit in the PVisRec setting. Theoretically, we show an improved overall regret bound with the same rank of time but an improved rank of action space. We further demonstrate the effectiveness of Hier-SUCB through extensive experiments where it is comparable to offline methods and outperforms other bandit algorithms in the setting of visualization recommendation.
Via

Feb 06, 2025
Abstract:In a widely popular analogy by Turing Award Laureate Yann LeCun, machine intelligence has been compared to cake - where unsupervised learning forms the base, supervised learning adds the icing, and reinforcement learning is the cherry on top. We expand this 'cake that is intelligence' analogy from a simple structural metaphor to the full life-cycle of AI systems, extending it to sourcing of ingredients (data), conception of recipes (instructions), the baking process (training), and the tasting and selling of the cake (evaluation and distribution). Leveraging our re-conceptualization, we describe each step's entailed social ramifications and how they are bounded by statistical assumptions within machine learning. Whereas these technical foundations and social impacts are deeply intertwined, they are often studied in isolation, creating barriers that restrict meaningful participation. Our re-conceptualization paves the way to bridge this gap by mapping where technical foundations interact with social outcomes, highlighting opportunities for cross-disciplinary dialogue. Finally, we conclude with actionable recommendations at each stage of the metaphorical AI cake's life-cycle, empowering prospective AI practitioners, users, and researchers, with increased awareness and ability to engage in broader AI discourse.
Via

Feb 06, 2025
Abstract:In the era of data-centric AI, the focus of recommender systems has shifted from model-centric innovations to data-centric approaches. The success of modern AI models is built on large-scale datasets, but this also results in significant training costs. Dataset distillation has emerged as a key solution, condensing large datasets to accelerate model training while preserving model performance. However, condensing discrete and sequentially correlated user-item interactions, particularly with extensive item sets, presents considerable challenges. This paper introduces \textbf{TD3}, a novel \textbf{T}ucker \textbf{D}ecomposition based \textbf{D}ataset \textbf{D}istillation method within a meta-learning framework, designed for sequential recommendation. TD3 distills a fully expressive \emph{synthetic sequence summary} from original data. To efficiently reduce computational complexity and extract refined latent patterns, Tucker decomposition decouples the summary into four factors: \emph{synthetic user latent factor}, \emph{temporal dynamics latent factor}, \emph{shared item latent factor}, and a \emph{relation core} that models their interconnections. Additionally, a surrogate objective in bi-level optimization is proposed to align feature spaces extracted from models trained on both original data and synthetic sequence summary beyond the na\"ive performance matching approach. In the \emph{inner-loop}, an augmentation technique allows the learner to closely fit the synthetic summary, ensuring an accurate update of it in the \emph{outer-loop}. To accelerate the optimization process and address long dependencies, RaT-BPTT is employed for bi-level optimization. Experiments and analyses on multiple public datasets have confirmed the superiority and cross-architecture generalizability of the proposed designs. Codes are released at https://github.com/USTC-StarTeam/TD3.
* This work has been accepted by WWW2025
Via

Feb 05, 2025
Abstract:Intent-based recommender systems have garnered significant attention for uncovering latent fine-grained preferences. Intents, as underlying factors of interactions, are crucial for improving recommendation interpretability. Most methods define intents as learnable parameters updated alongside interactions. However, existing frameworks often overlook textual information (e.g., user reviews, item descriptions), which is crucial for alleviating the sparsity of interaction intents. Exploring these multimodal intents, especially the inherent differences in representation spaces, poses two key challenges: i) How to align multimodal intents and effectively mitigate noise issues; ii) How to extract and match latent key intents across modalities. To tackle these challenges, we propose a model-agnostic framework, Intent Representation Learning with Large Language Model (IRLLRec), which leverages large language models (LLMs) to construct multimodal intents and enhance recommendations. Specifically, IRLLRec employs a dual-tower architecture to learn multimodal intent representations. Next, we propose pairwise and translation alignment to eliminate inter-modal differences and enhance robustness against noisy input features. Finally, to better match textual and interaction-based intents, we employ momentum distillation to perform teacher-student learning on fused intent representations. Empirical evaluations on three datasets show that our IRLLRec framework outperforms baselines. The implementation is available at https://github.com/wangyu0627/IRLLRec.
* 11 pages, 8 figures
Via

Feb 05, 2025
Abstract:The Cox proportional hazards model is often used for model development in data from randomized controlled trials (RCT) with time-to-event outcomes. Random survival forests (RSF) is a machine-learning algorithm known for its high predictive performance. We conduct a comprehensive neutral comparison study to compare the predictive performance of Cox regression and RSF in real-world as well as simulated data. Performance is compared using multiple performance measures according to recommendations for the comparison of prognostic prediction models. We found that while the RSF usually outperforms the Cox model when using the $C$ index, Cox model predictions may be better calibrated. With respect to overall performance, the Cox model often exceeds the RSF in nonproportional hazards settings, while otherwise the RSF typically performs better especially for smaller sample sizes. Overall performance of the RSF is more affected by higher censoring rates, while overall performance of the Cox model suffers more from smaller sample sizes.
Via

Feb 05, 2025
Abstract:In real-world recommender systems, different tasks are typically addressed using supervised learning on task-specific datasets with carefully designed model architectures. We demonstrate that large language models (LLMs) can function as universal recommendation learners, capable of handling multiple tasks within a unified input-output framework, eliminating the need for specialized model designs. To improve the recommendation performance of LLMs, we introduce a multimodal fusion module for item representation and a sequence-in-set-out approach for efficient candidate generation. When applied to industrial-scale data, our LLM achieves competitive results with expert models elaborately designed for different recommendation tasks. Furthermore, our analysis reveals that recommendation outcomes are highly sensitive to text input, highlighting the potential of prompt engineering in optimizing industrial-scale recommender systems.
Via

Feb 05, 2025
Abstract:Inspired by scaling laws and large language models, research on large-scale recommendation models has gained significant attention. Recent advancements have shown that expanding sequential recommendation models to large-scale recommendation models can be an effective strategy. Current state-of-the-art sequential recommendation models primarily use self-attention mechanisms for explicit feature interactions among items, while implicit interactions are managed through Feed-Forward Networks (FFNs). However, these models often inadequately integrate temporal and positional information, either by adding them to attention weights or by blending them with latent representations, which limits their expressive power. A recent model, HSTU, further reduces the focus on implicit feature interactions, constraining its performance. We propose a new model called FuXi-$\alpha$ to address these issues. This model introduces an Adaptive Multi-channel Self-attention mechanism that distinctly models temporal, positional, and semantic features, along with a Multi-stage FFN to enhance implicit feature interactions. Our offline experiments demonstrate that our model outperforms existing models, with its performance continuously improving as the model size increases. Additionally, we conducted an online A/B test within the Huawei Music app, which showed a $4.76\%$ increase in the average number of songs played per user and a $5.10\%$ increase in the average listening duration per user. Our code has been released at https://github.com/USTC-StarTeam/FuXi-alpha.
* Accepted by WWW2025
Via
