What is Recommendation? Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Papers and Code
Jan 09, 2025
Abstract:Explainable AI (XAI) provides methods to understand non-interpretable machine learning models. However, we have little knowledge about what legal experts expect from these explanations, including their legal compliance with, and value against European Union legislation. To close this gap, we present the Explanation Dialogues, an expert focus study to uncover the expectations, reasoning, and understanding of legal experts and practitioners towards XAI, with a specific focus on the European General Data Protection Regulation. The study consists of an online questionnaire and follow-up interviews, and is centered around a use-case in the credit domain. We extract both a set of hierarchical and interconnected codes using grounded theory, and present the standpoints of the participating experts towards XAI. We find that the presented explanations are hard to understand and lack information, and discuss issues that can arise from the different interests of the data controller and subject. Finally, we present a set of recommendations for developers of XAI methods, and indications of legal areas of discussion. Among others, recommendations address the presentation, choice, and content of an explanation, technical risks as well as the end-user, while we provide legal pointers to the contestability of explanations, transparency thresholds, intellectual property rights as well as the relationship between involved parties.
* Artificial Intelligence and Law (Springer Nature)
Via
Jan 09, 2025
Abstract:Reinforcement learning demonstrated immense success in modelling complex physics-driven systems, providing end-to-end trainable solutions by interacting with a simulated or real environment, maximizing a scalar reward signal. In this work, we propose, building upon previous work, a multi-agent reinforcement learning approach with assignment constraints for reconstructing particle tracks in pixelated particle detectors. Our approach optimizes collaboratively a parametrized policy, functioning as a heuristic to a multidimensional assignment problem, by jointly minimizing the total amount of particle scattering over the reconstructed tracks in a readout frame. To satisfy constraints, guaranteeing a unique assignment of particle hits, we propose a safety layer solving a linear assignment problem for every joint action. Further, to enforce cost margins, increasing the distance of the local policies predictions to the decision boundaries of the optimizer mappings, we recommend the use of an additional component in the blackbox gradient estimation, forcing the policy to solutions with lower total assignment costs. We empirically show on simulated data, generated for a particle detector developed for proton imaging, the effectiveness of our approach, compared to multiple single- and multi-agent baselines. We further demonstrate the effectiveness of constraints with cost margins for both optimization and generalization, introduced by wider regions with high reconstruction performance as well as reduced predictive instabilities. Our results form the basis for further developments in RL-based tracking, offering both enhanced performance with constrained policies and greater flexibility in optimizing tracking algorithms through the option for individual and team rewards.
Via
Jan 09, 2025
Abstract:External cervical resorption (ECR) is a resorptive process affecting teeth. While in some patients, active resorption ceases and gets replaced by osseous tissue, in other cases, the resorption progresses and ultimately results in tooth loss. For proper ECR assessment, cone-beam computed tomography (CBCT) is the recommended imaging modality, enabling a 3-D characterization of these lesions. While it is possible to manually identify and measure ECR resorption in CBCT scans, this process can be time intensive and highly subject to human error. Therefore, there is an urgent need to develop an automated method to identify and quantify the severity of ECR resorption using CBCT. Here, we present a method for ECR lesion segmentation that is based on automatic, binary classification of locally extracted voxel-wise texture features. We evaluate our method on 6 longitudinal CBCT datasets and show that certain texture-features can be used to accurately detect subtle CBCT signal changes due to ECR. We also present preliminary analyses clustering texture features within a lesion to stratify the defects and identify patterns indicative of calcification. These methods are important steps in developing prognostic biomarkers to predict whether ECR will continue to progress or cease, ultimately informing treatment decisions.
* 4 pages, 3 figures, 1 table
Via
Jan 09, 2025
Abstract:Large language models (LLMs) are advanced AI systems applied across various domains, including NLP, information retrieval, and recommendation systems. Despite their adaptability and efficiency, LLMs have not been extensively explored for signal processing tasks, particularly in the domain of global navigation satellite system (GNSS) interference monitoring. GNSS interference monitoring is essential to ensure the reliability of vehicle localization on roads, a critical requirement for numerous applications. However, GNSS-based positioning is vulnerable to interference from jamming devices, which can compromise its accuracy. The primary objective is to identify, classify, and mitigate these interferences. Interpreting GNSS snapshots and the associated interferences presents significant challenges due to the inherent complexity, including multipath effects, diverse interference types, varying sensor characteristics, and satellite constellations. In this paper, we extract features from a large GNSS dataset and employ LLaVA to retrieve relevant information from an extensive knowledge base. We employ prompt engineering to interpret the interferences and environmental factors, and utilize t-SNE to analyze the feature embeddings. Our findings demonstrate that the proposed method is capable of visual and logical reasoning within the GNSS context. Furthermore, our pipeline outperforms state-of-the-art machine learning models in interference classification tasks.
Via
Jan 09, 2025
Abstract:Monitoring complex assembly processes is critical for maintaining productivity and ensuring compliance with assembly standards. However, variability in human actions and subjective task preferences complicate accurate task anticipation and guidance. To address these challenges, we introduce the Multi-Modal Transformer Fusion and Recurrent Units (MMTFRU) Network for egocentric activity anticipation, utilizing multimodal fusion to improve prediction accuracy. Integrated with the Operator Action Monitoring Unit (OAMU), the system provides proactive operator guidance, preventing deviations in the assembly process. OAMU employs two strategies: (1) Top-5 MMTF-RU predictions, combined with a reference graph and an action dictionary, for next-step recommendations; and (2) Top-1 MMTF-RU predictions, integrated with a reference graph, for detecting sequence deviations and predicting anomaly scores via an entropy-informed confidence mechanism. We also introduce Time-Weighted Sequence Accuracy (TWSA) to evaluate operator efficiency and ensure timely task completion. Our approach is validated on the industrial Meccano dataset and the largescale EPIC-Kitchens-55 dataset, demonstrating its effectiveness in dynamic environments.
Via
Jan 09, 2025
Abstract:Multistakeholder recommender systems are those that account for the impacts and preferences of multiple groups of individuals, not just the end users receiving recommendations. Due to their complexity, evaluating these systems cannot be restricted to the overall utility of a single stakeholder, as is often the case of more mainstream recommender system applications. In this article, we focus our discussion on the intricacies of the evaluation of multistakeholder recommender systems. We bring attention to the different aspects involved in the evaluation of multistakeholder recommender systems - from the range of stakeholders involved (including but not limited to producers and consumers) to the values and specific goals of each relevant stakeholder. Additionally, we discuss how to move from theoretical principles to practical implementation, providing specific use case examples. Finally, we outline open research directions for the RecSys community to explore. We aim to provide guidance to researchers and practitioners about how to think about these complex and domain-dependent issues of evaluation in the course of designing, developing, and researching applications with multistakeholder aspects.
* Preprint submitted to Elsevier, "Re-centering the User in Recommender
System Research" special issue of the International Journal of Human-Computer
Studies (IJHCS)
Via
Jan 08, 2025
Abstract:The underlying data source for web usage mining (WUM) is commonly thought to be server logs. However, access log files ensure quite limited data about the clients. Identifying sessions from this messy data takes a considerable effort, and operations performed for this purpose do not always yield excellent results. Also, this data cannot be used for web analytics efficiently. This study proposes an innovative method for user tracking, session management, and collecting web usage data. The method is mainly based on a new approach for using collected data for web analytics extraction as the data source in web usage mining. An application-based API has been developed with a different strategy from conventional client-side methods to obtain and process log data. The log data has been successfully gathered by integrating the technique into an enterprise web application. The results reveal that the homogeneous structured data collected and stored with this method is more convenient to browse, filter, and process than web server logs. This data stored on a relational database can be used effortlessly as a reliable data source for high-performance web usage mining activity, real-time web analytics, or a functional recommendation system.
* Engineering Science and Technology, an International Journal, 40
(2023) 101360
* 15 pages, 8 figures
Via
Jan 08, 2025
Abstract:To preserve user privacy in recommender systems, federated recommendation (FR) based on federated learning (FL) emerges, keeping the personal data on the local client and updating a model collaboratively. Unlike FL, FR has a unique sparse aggregation mechanism, where the embedding of each item is updated by only partial clients, instead of full clients in a dense aggregation of general FL. Recently, as an essential principle of FL, model security has received increasing attention, especially for Byzantine attacks, where malicious clients can send arbitrary updates. The problem of exploring the Byzantine robustness of FR is particularly critical since in the domains applying FR, e.g., e-commerce, malicious clients can be injected easily by registering new accounts. However, existing Byzantine works neglect the unique sparse aggregation of FR, making them unsuitable for our problem. Thus, we make the first effort to investigate Byzantine attacks on FR from the perspective of sparse aggregation, which is non-trivial: it is not clear how to define Byzantine robustness under sparse aggregations and design Byzantine attacks under limited knowledge/capability. In this paper, we reformulate the Byzantine robustness under sparse aggregation by defining the aggregation for a single item as the smallest execution unit. Then we propose a family of effective attack strategies, named Spattack, which exploit the vulnerability in sparse aggregation and are categorized along the adversary's knowledge and capability. Extensive experimental results demonstrate that Spattack can effectively prevent convergence and even break down defenses under a few malicious clients, raising alarms for securing FR systems.
* accepted by AAAI 2025
Via
Jan 08, 2025
Abstract:Domain adaptation is a sub-field of machine learning that involves transferring knowledge from a source domain to perform the same task in the target domain. It is a typical challenge in machine learning that arises, e.g., when data is obtained from various sources or when using a data basis that changes over time. Recent advances in the field offer promising methods, but it is still challenging for researchers and practitioners to determine if domain adaptation is suitable for a given problem -- and, subsequently, to select the appropriate approach. This article employs design science research to develop a problem-oriented framework for domain adaptation, which is matured in three evaluation episodes. We describe a framework that distinguishes between five domain adaptation scenarios, provides recommendations for addressing each scenario, and offers guidelines for determining if a problem falls into one of these scenarios. During the multiple evaluation episodes, the framework is tested on artificial and real-world datasets and an experimental study involving 100 participants. The evaluation demonstrates that the framework has the explanatory power to capture any domain adaptation problem effectively. In summary, we provide clear guidance for researchers and practitioners who want to employ domain adaptation but lack in-depth knowledge of the possibilities.
Via
Jan 08, 2025
Abstract:Unrolled networks have become prevalent in various computer vision and imaging tasks. Although they have demonstrated remarkable efficacy in solving specific computer vision and computational imaging tasks, their adaptation to other applications presents considerable challenges. This is primarily due to the multitude of design decisions that practitioners working on new applications must navigate, each potentially affecting the network's overall performance. These decisions include selecting the optimization algorithm, defining the loss function, and determining the number of convolutional layers, among others. Compounding the issue, evaluating each design choice requires time-consuming simulations to train, fine-tune the neural network, and optimize for its performance. As a result, the process of exploring multiple options and identifying the optimal configuration becomes time-consuming and computationally demanding. The main objectives of this paper are (1) to unify some ideas and methodologies used in unrolled networks to reduce the number of design choices a user has to make, and (2) to report a comprehensive ablation study to discuss the impact of each of the choices involved in designing unrolled networks and present practical recommendations based on our findings. We anticipate that this study will help scientists and engineers design unrolled networks for their applications and diagnose problems within their networks efficiently.
Via