Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Recommender systems often struggle with long-tail distributions and limited item catalog exposure, where a small subset of popular items dominates recommendations. This challenge is especially critical in large-scale online retail settings with extensive and diverse product assortments. This paper introduces an approach to enhance catalog coverage without compromising recommendation quality in the existing digital recommendation pipeline at IKEA Retail. Drawing inspiration from recent advances in negative sampling to address popularity bias, we integrate contrastive learning with carefully selected negative samples. Through offline and online evaluations, we demonstrate that our method improves catalog coverage, ensuring a more diverse set of recommendations yet preserving strong recommendation performance.
Bayesian Optimization (BO) is a standard tool for hyperparameter tuning thanks to its sample efficiency on expensive black-box functions. While most BO pipelines begin with uniform random initialization, default hyperparameter values shipped with popular ML libraries such as scikit-learn encode implicit expert knowledge and could serve as informative starting points that accelerate convergence. This hypothesis, despite its intuitive appeal, has remained largely unexamined. We formalize the idea by initializing BO with points drawn from truncated Gaussian distributions centered at library defaults and compare the resulting trajectories against a uniform-random baseline. We conduct an extensive empirical evaluation spanning three BO back-ends (BoTorch, Optuna, Scikit-Optimize), three model families (Random Forests, Support Vector Machines, Multilayer Perceptrons), and five benchmark datasets covering classification and regression tasks. Performance is assessed through convergence speed and final predictive quality, and statistical significance is determined via one-sided binomial tests. Across all conditions, default-informed initialization yields no statistically significant advantage over purely random sampling, with p-values ranging from 0.141 to 0.908. A sensitivity analysis on the prior variance confirms that, while tighter concentration around the defaults improves early evaluations, this transient benefit vanishes as optimization progresses, leaving final performance unchanged. Our results provide no evidence that default hyperparameters encode useful directional information for optimization. We therefore recommend that practitioners treat hyperparameter tuning as an integral part of model development and favor principled, data-driven search strategies over heuristic reliance on library defaults.
Sequential recommendation (SR) aims to predict a user's next action by learning from their historical interaction sequences. In real-world applications, these models require periodic updates to adapt to new interactions and evolving user preferences. While incremental learning methods facilitate these updates, they face significant challenges. Replay-based approaches incur high memory and computational costs, and regularization-based methods often struggle to discard outdated or conflicting knowledge. To overcome these challenges, we propose SA-CAISR, a Stage-Adaptive and Conflict-Aware Incremental Sequential Recommendation framework. As a buffer-free framework, SA-CAISR operates using only the old model and new data, directly addressing the high costs of replay-based techniques. SA-CAISR introduces a novel Fisher-weighted knowledge-screening mechanism that dynamically identifies outdated knowledge by estimating parameter-level conflicts between the old model and new data, allowing our approach to selectively remove obsolete knowledge while preserving compatible historical patterns. This dynamic balance between stability and adaptability allows our method to achieve a new state-of-the-art performance in incremental SR. Specifically, SA-CAISR improves Recall@20 by 2.0%, MRR@20 by 1.2%, and NDCG@20 by 1.4% on average across datasets, while reducing memory usage by 97.5% and training time by 46.9% compared to the best baselines. This efficiency allows real-world systems to rapidly update user profiles with minimal computational overhead, ensuring more timely and accurate recommendations.
Sequential recommender infers users' evolving psychological motivations from historical interactions to recommend the next preferred items. Most existing methods compress recent behaviors into a single vector and optimize it toward a single observed target item, but lack explicit modeling of psychological motivation shift. As a result, they struggle to uncover the distributional patterns across different shift degrees and to capture collaborative knowledge that is sensitive to psychological motivation shift. We propose a general framework, the Sequential Recommender System Based on User Psychological Motivation, to enhance sequential recommenders with psychological motivation shift-aware user modeling. Specifically, the Psychological Motivation Shift Assessment quantitatively measures psychological motivation shift; guided by PMSA, the Shift Information Construction models dynamically evolving multi-level shift states, and the Psychological Motivation Shift-driven Information Decomposition decomposes and regularizes representations across shift levels. Moreover, the Psychological Motivation Shift Information Matching strengthens collaborative patterns related to psychological motivation shift to learn more discriminative user representations. Extensive experiments on three public benchmarks show that SRSUPM consistently outperforms representative baselines on diverse sequential recommender tasks.
Reinforcement Learning is increasingly applied to logistics, scheduling, and recommender systems, but standard algorithms struggle with the curse of dimensionality in such large discrete action spaces. Existing algorithms typically rely on restrictive grid-based structures or computationally expensive nearest-neighbor searches, limiting their effectiveness in high-dimensional or irregularly structured domains. We propose Distance-Guided Reinforcement Learning (DGRL), combining Sampled Dynamic Neighborhoods (SDN) and Distance-Based Updates (DBU) to enable efficient RL in spaces with up to 10$^\text{20}$ actions. Unlike prior methods, SDN leverages a semantic embedding space to perform stochastic volumetric exploration, provably providing full support over a local trust region. Complementing this, DBU transforms policy optimization into a stable regression task, decoupling gradient variance from action space cardinality and guaranteeing monotonic policy improvement. DGRL naturally generalizes to hybrid continuous-discrete action spaces without requiring hierarchical dependencies. We demonstrate performance improvements of up to 66% against state-of-the-art benchmarks across regularly and irregularly structured environments, while simultaneously improving convergence speed and computational complexity.
Generative Recommendation has revolutionized recommender systems by reformulating retrieval as a sequence generation task over discrete item identifiers. Despite the progress, existing approaches typically rely on static, decoupled tokenization that ignores collaborative signals. While recent methods attempt to integrate collaborative signals into item identifiers either during index construction or through end-to-end modeling, they encounter significant challenges in real-world production environments. Specifically, the volatility of collaborative signals leads to unstable tokenization, and current end-to-end strategies often devolve into suboptimal two-stage training rather than achieving true co-evolution. To bridge this gap, we propose PIT, a dynamic Personalized Item Tokenizer framework for end-to-end generative recommendation, which employs a co-generative architecture that harmonizes collaborative patterns through collaborative signal alignment and synchronizes item tokenizer with generative recommender via a co-evolution learning. This enables the dynamic, joint, end-to-end evolution of both index construction and recommendation. Furthermore, a one-to-many beam index ensures scalability and robustness, facilitating seamless integration into large-scale industrial deployments. Extensive experiments on real-world datasets demonstrate that PIT consistently outperforms competitive baselines. In a large-scale deployment at Kuaishou, an online A/B test yielded a substantial 0.402% uplift in App Stay Time, validating the framework's effectiveness in dynamic industrial environments.
Peer-run organizations (PROs) provide critical, recovery-based behavioral health support rooted in lived experience. As large language models (LLMs) enter this domain, their scale, conversationality, and opacity introduce new challenges for situatedness, trust, and autonomy. Partnering with Collaborative Support Programs of New Jersey (CSPNJ), a statewide PRO in the Northeastern United States, we used comicboarding, a co-design method, to conduct workshops with 16 peer specialists and 10 service users exploring perceptions of integrating an LLM-based recommendation system into peer support. Findings show that depending on how LLMs are introduced, constrained, and co-used, they can reconfigure in-room dynamics by sustaining, undermining, or amplifying the relational authority that grounds peer support. We identify opportunities, risks, and mitigation strategies across three tensions: bridging scale and locality, protecting trust and relational dynamics, and preserving peer autonomy amid efficiency gains. We contribute design implications that center lived-experience-in-the-loop, reframe trust as co-constructed, and position LLMs not as clinical tools but as relational collaborators in high-stakes, community-led care.
Privacy is a human right that sustains patient-provider trust. Clinical notes capture a patient's private vulnerability and individuality, which are used for care coordination and research. Under HIPAA Safe Harbor, these notes are de-identified to protect patient privacy. However, Safe Harbor was designed for an era of categorical tabular data, focusing on the removal of explicit identifiers while ignoring the latent information found in correlations between identity and quasi-identifiers, which can be captured by modern LLMs. We first formalize these correlations using a causal graph, then validate it empirically through individual re-identification of patients from scrubbed notes. The paradox of de-identification is further shown through a diagnosis ablation: even when all other information is removed, the model can predict the patient's neighborhood based on diagnosis alone. This position paper raises the question of how we can act as a community to uphold patient-provider trust when de-identification is inherently imperfect. We aim to raise awareness and discuss actionable recommendations.
Academic peer review remains the cornerstone of scholarly validation, yet the field faces some challenges in data and methods. From the data perspective, existing research is hindered by the scarcity of large-scale, verified benchmarks and oversimplified evaluation metrics that fail to reflect real-world editorial workflows. To bridge this gap, we present OmniReview, a comprehensive dataset constructed by integrating multi-source academic platforms encompassing comprehensive scholarly profiles through the disambiguation pipeline, yielding 202, 756 verified review records. Based on this data, we introduce a three-tier hierarchical evaluaion framework to assess recommendations from recall to precise expert identification. From the method perspective, existing embedding-based approaches suffer from the information bottleneck of semantic compression and limited interpretability. To resolve these method limitations, we propose Profiling Scholars with Multi-gate Mixture-of-Experts (Pro-MMoE), a novel framework that synergizes Large Language Models (LLMs) with Multi-task Learning. Specifically, it utilizes LLM-generated semantic profiles to preserve fine-grained expertise nuances and interpretability, while employing a Task-Adaptive MMoE architecture to dynamically balance conflicting evaluation goals. Comprehensive experiments demonstrate that Pro-MMoE achieves state-of-the-art performance across six of seven metrics, establishing a new benchmark for realistic reviewer recommendation.
Generative retrieval (GR) has emerged as a promising paradigm in recommendation systems by autoregressively decoding identifiers of target items. Despite its potential, current approaches typically rely on the next-token prediction schema, which treats each token of the next interacted items as the sole target. This narrow focus 1) limits their ability to capture the nuanced structure of user preferences, and 2) overlooks the deep interaction between decoded identifiers and user behavior sequences. In response to these challenges, we propose RankGR, a Rank-enhanced Generative Retrieval method that incorporates listwise direct preference optimization for recommendation. RankGR decomposes the retrieval process into two complementary stages: the Initial Assessment Phase (IAP) and the Refined Scoring Phase (RSP). In IAP, we incorporate a novel listwise direct preference optimization strategy into GR, thus facilitating a more comprehensive understanding of the hierarchical user preferences and more effective partial-order modeling. The RSP then refines the top-λ candidates generated by IAP with interactions towards input sequences using a lightweight scoring module, leading to more precise candidate evaluation. Both phases are jointly optimized under a unified GR model, ensuring consistency and efficiency. Additionally, we implement several practical improvements in training and deployment, ultimately achieving a real-time system capable of handling nearly ten thousand requests per second. Extensive offline performance on both research and industrial datasets, as well as the online gains on the "Guess You Like" section of Taobao, validate the effectiveness and scalability of RankGR.