Recommendation is the task of providing personalized suggestions to users based on their preferences and behavior.
Counterfactual explanations are widely used to communicate how inputs must change for a model to alter its prediction. For a single instance, many valid counterfactuals can exist, which leaves open the possibility for an explanation provider to cherry-pick explanations that better suit a narrative of their choice, highlighting favourable behaviour and withholding examples that reveal problematic behaviour. We formally define cherry-picking for counterfactual explanations in terms of an admissible explanation space, specified by the generation procedure, and a utility function. We then study to what extent an external auditor can detect such manipulation. Considering three levels of access to the explanation process: full procedural access, partial procedural access, and explanation-only access, we show that detection is extremely limited in practice. Even with full procedural access, cherry-picked explanations can remain difficult to distinguish from non cherry-picked explanations, because the multiplicity of valid counterfactuals and flexibility in the explanation specification provide sufficient degrees of freedom to mask deliberate selection. Empirically, we demonstrate that this variability often exceeds the effect of cherry-picking on standard counterfactual quality metrics such as proximity, plausibility, and sparsity, making cherry-picked explanations statistically indistinguishable from baseline explanations. We argue that safeguards should therefore prioritise reproducibility, standardisation, and procedural constraints over post-hoc detection, and we provide recommendations for algorithm developers, explanation providers, and auditors.
Large Language Models (LLMs) have emerged as promising recommendation systems, offering novel ways to model user preferences through generative approaches. However, many existing methods often rely solely on text semantics or incorporate collaborative signals in a limited manner, typically using only user or item embeddings. These methods struggle to handle multiple item embeddings representing user history, reverting to textual semantics and neglecting richer collaborative information. In this work, we propose a simple yet effective solution that projects user and item embeddings, learned from collaborative filtering, into the LLM token space via separate lightweight projector modules. A finetuned LLM then conditions on these projected embeddings alongside textual tokens to generate recommendations. Preliminary results show that this design effectively leverages structured user-item interaction data, improves recommendation performance over text-only LLM baselines, and offers a practical path for bridging traditional recommendation systems with modern LLMs.
Generative Recommendation has emerged as a promising paradigm, reformulating recommendation as a sequence-to-sequence generation task over hierarchical Semantic IDs. However, existing methods suffer from a critical issue we term Semantic Drift, where errors in early, high-level tokens irreversibly divert the generation trajectory into irrelevant semantic subspaces. Inspired by Process Reward Models (PRMs) that enhance reasoning in Large Language Models, we propose Promise, a novel framework that integrates dense, step-by-step verification into generative models. Promise features a lightweight PRM to assess the quality of intermediate inference steps, coupled with a PRM-guided Beam Search strategy that leverages dense feedback to dynamically prune erroneous branches. Crucially, our approach unlocks Test-Time Scaling Laws for recommender systems: by increasing inference compute, smaller models can match or surpass larger models. Extensive offline experiments and online A/B tests on a large-scale platform demonstrate that Promise effectively mitigates Semantic Drift, significantly improving recommendation accuracy while enabling efficient deployment.
Modeling human decision-making is central to applications such as recommendation, preference learning, and human-AI alignment. While many classic models assume context-independent choice behavior, a large body of behavioral research shows that preferences are often influenced by the composition of the choice set itself -- a phenomenon known as the context effect or Halo effect. These effects can manifest as pairwise (first-order) or even higher-order interactions among the available alternatives. Recent models that attempt to capture such effects either focus on the featureless setting or, in the feature-based setting, rely on restrictive interaction structures or entangle interactions across all orders, which limits interpretability. In this work, we propose DeepHalo, a neural modeling framework that incorporates features while enabling explicit control over interaction order and principled interpretation of context effects. Our model enables systematic identification of interaction effects by order and serves as a universal approximator of context-dependent choice functions when specialized to a featureless setting. Experiments on synthetic and real-world datasets demonstrate strong predictive performance while providing greater transparency into the drivers of choice.
Generative recommendation with large language models (LLMs) reframes prediction as sequence generation, yet existing LLM-based recommenders remain limited in leveraging geographic signals that are crucial in mobility and local-services scenarios. Here, we present Reasoning Over Space (ROS), a framework that utilizes geography as a vital decision variable within the reasoning process. ROS introduces a Hierarchical Spatial Semantic ID (SID) that discretizes coarse-to-fine locality and POI semantics into compositional tokens, and endows LLM with a three-stage Mobility Chain-of-Thought (CoT) paradigm that models user personality, constructs an intent-aligned candidate space, and performs locality informed pruning. We further align the model with real world geography via spatial-guided Reinforcement Learning (RL). Experiments on three widely used location-based social network (LBSN) datasets show that ROS achieves over 10% relative gains in hit rate over strongest LLM-based baselines and improves cross-city transfer, despite using a smaller backbone model.
In recommender systems, online A/B testing is a crucial method for evaluating the performance of different models. However, conducting online A/B testing often presents significant challenges, including substantial economic costs, user experience degradation, and considerable time requirements. With the Large Language Models' powerful capacity, LLM-based agent shows great potential to replace traditional online A/B testing. Nonetheless, current agents fail to simulate the perception process and interaction patterns, due to the lack of real environments and visual perception capability. To address these challenges, we introduce a multi-modal user agent for A/B testing (A/B Agent). Specifically, we construct a recommendation sandbox environment for A/B testing, enabling multimodal and multi-page interactions that align with real user behavior on online platforms. The designed agent leverages multimodal information perception, fine-grained user preferences, and integrates profiles, action memory retrieval, and a fatigue system to simulate complex human decision-making. We validated the potential of the agent as an alternative to traditional A/B testing from three perspectives: model, data, and features. Furthermore, we found that the data generated by A/B Agent can effectively enhance the capabilities of recommendation models. Our code is publicly available at https://github.com/Applied-Machine-Learning-Lab/ABAgent.
Personalized nutrition management aims to tailor dietary guidance to an individual's intake and phenotype, but most existing systems handle food logging, nutrient analysis and recommendation separately. We present a next-generation mobile nutrition assistant that combines image based meal logging with an LLM driven multi agent controller to provide meal level closed loop support. The system coordinates vision, dialogue and state management agents to estimate nutrients from photos and update a daily intake budget. It then adapts the next meal plan to user preferences and dietary constraints. Experiments with SNAPMe meal images and simulated users show competitive nutrient estimation, personalized menus and efficient task plans. These findings demonstrate the feasibility of multi agent LLM control for personalized nutrition and reveal open challenges in micronutrient estimation from images and in large scale real world studies.
The quality of subword tokenization is critical for Large Language Models, yet evaluating tokenizers for morphologically rich Uralic languages is hampered by the lack of clean morpheme lexicons. We introduce SampoNLP, a corpus-free toolkit for morphological lexicon creation using MDL-inspired Self-Referential Atomicity Scoring, which filters composite forms through internal structural cues - suited for low-resource settings. Using the high-purity lexicons generated by SampoNLP for Finnish, Hungarian, and Estonian, we conduct a systematic evaluation of BPE tokenizers across a range of vocabulary sizes (8k-256k). We propose a unified metric, the Integrated Performance Score (IPS), to navigate the trade-off between morpheme coverage and over-splitting. By analyzing the IPS curves, we identify the "elbow points" of diminishing returns and provide the first empirically grounded recommendations for optimal vocabulary sizes (k) in these languages. Our study not only offers practical guidance but also quantitatively demonstrates the limitations of standard BPE for highly agglutinative languages. The SampoNLP library and all generated resources are made publicly available: https://github.com/AragonerUA/SampoNLP
Recommendation for live-streaming e-commerce is gaining increasing attention due to the explosive growth of the live streaming economy. Different from traditional e-commerce, live-streaming e-commerce shifts the focus from products to streamers, which requires ranking mechanism to balance both purchases and user-streamer interactions for long-term ecology. To trade off multiple objectives, a popular solution is to build an ensemble model to integrate multi-objective scores into a unified score. The ensemble model is usually supervised by multiple independent binary classification losses of all objectives. However, this paradigm suffers from two inherent limitations. First, the optimization direction of the binary classification task is misaligned with the ranking task (evaluated by AUC). Second, this paradigm overlooks the alignment between objectives, e.g., comment and buy behaviors are partially dependent which can be revealed in labels correlations. The model can achieve better trade-offs if it learns the aligned parts of ranking abilities among different objectives. To mitigate these limitations, we propose a novel multi-objective ensemble framework HarmonRank to fulfill both alignment to the ranking task and alignment among objectives. For alignment to ranking, we formulate ranking metric AUC as a rank-sum problem and utilize differentiable ranking techniques for ranking-oriented optimization. For inter-objective alignment, we change the original one-step ensemble paradigm to a two-step relation-aware ensemble scheme. Extensive offline experiments results on two industrial datasets and online experiments demonstrate that our approach significantly outperforms existing state-of-the-art methods. The proposed method has been fully deployed in Kuaishou's live-streaming e-commerce recommendation platform with 400 million DAUs, contributing over 2% purchase gain.
A Multinomial Logit (MNL) model is composed of a finite universe of items $[n]=\{1,..., n\}$, each assigned a positive weight. A query specifies an admissible subset -- called a slate -- and the model chooses one item from that slate with probability proportional to its weight. This query model is also known as the Plackett-Luce model or conditional sampling oracle in the literature. Although MNLs have been studied extensively, a basic computational question remains open: given query access to slates, how efficiently can we learn weights so that, for every slate, the induced choice distribution is within total variation distance $\varepsilon$ of the ground truth? This question is central to MNL learning and has direct implications for modern recommender system interfaces. We provide two algorithms for this task, one with adaptive queries and one with non-adaptive queries. Each algorithm outputs an MNL $M'$ that induces, for each slate $S$, a distribution $M'_S$ on $S$ that is within $\varepsilon$ total variation distance of the true distribution. Our adaptive algorithm makes $O\left(\frac{n}{\varepsilon^{3}}\log n\right)$ queries, while our non-adaptive algorithm makes $O\left(\frac{n^{2}}{\varepsilon^{3}}\log n \log\frac{n}{\varepsilon}\right)$ queries. Both algorithms query only slates of size two and run in time proportional to their query complexity. We complement these upper bounds with lower bounds of $Ω\left(\frac{n}{\varepsilon^{2}}\log n\right)$ for adaptive queries and $Ω\left(\frac{n^{2}}{\varepsilon^{2}}\log n\right)$ for non-adaptive queries, thus proving that our adaptive algorithm is optimal in its dependence on the support size $n$, while the non-adaptive one is tight within a $\log n$ factor.