Abstract:Generative recommendation (GR) typically first quantizes continuous item embeddings into multi-level semantic IDs (SIDs), and then generates the next item via autoregressive decoding. Although existing methods are already competitive in terms of recommendation performance, directly inheriting the autoregressive decoding paradigm from language models still suffers from three key limitations: (1) autoregressive decoding struggles to jointly capture global dependencies among the multi-dimensional features associated with different positions of SID; (2) using a unified, fixed decoding path for the same item implicitly assumes that all users attend to item attributes in the same order; (3) autoregressive decoding is inefficient at inference time and struggles to meet real-time requirements. To tackle these challenges, we propose MDGR, a Masked Diffusion Generative Recommendation framework that reshapes the GR pipeline from three perspectives: codebook, training, and inference. (1) We adopt a parallel codebook to provide a structural foundation for diffusion-based GR. (2) During training, we adaptively construct masking supervision signals along both the temporal and sample dimensions. (3) During inference, we develop a warm-up-based two-stage parallel decoding strategy for efficient generation of SIDs. Extensive experiments on multiple public and industrial-scale datasets show that MDGR outperforms ten state-of-the-art baselines by up to 10.78%. Furthermore, by deploying MDGR on a large-scale online advertising platform, we achieve a 1.20% increase in revenue, demonstrating its practical value. The code will be released upon acceptance.
Abstract:The integration of large language models (LLMs) into recommendation systems has revealed promising potential through their capacity to extract world knowledge for enhanced reasoning capabilities. However, current methodologies that adopt static schema-based prompting mechanisms encounter significant limitations: (1) they employ universal template structures that neglect the multi-faceted nature of user preference diversity; (2) they implement superficial alignment between semantic knowledge representations and behavioral feature spaces without achieving comprehensive latent space integration. To address these challenges, we introduce CoCo, an end-to-end framework that dynamically constructs user-specific contextual knowledge embeddings through a dual-mechanism approach. Our method realizes profound integration of semantic and behavioral latent dimensions via adaptive knowledge fusion and contradiction resolution modules. Experimental evaluations across diverse benchmark datasets and an enterprise-level e-commerce platform demonstrate CoCo's superiority, achieving a maximum 8.58% improvement over seven cutting-edge methods in recommendation accuracy. The framework's deployment on a production advertising system resulted in a 1.91% sales growth, validating its practical effectiveness. With its modular design and model-agnostic architecture, CoCo provides a versatile solution for next-generation recommendation systems requiring both knowledge-enhanced reasoning and personalized adaptation.