Abstract:Recommender systems are essential for delivering personalized content across digital platforms by modeling user preferences and behaviors. Recently, large language models (LLMs) have been adopted for prompt-based recommendation due to their ability to generate personalized outputs without task-specific training. However, LLM-based methods face limitations such as limited context window size, inefficient pointwise and pairwise prompting, and difficulty handling listwise ranking due to token constraints. LLMs can also be sensitive to position bias, as they may overemphasize earlier items in the prompt regardless of their true relevance. To address and investigate these issues, we propose a hybrid framework that combines a traditional recommendation model with an LLM for reranking top-k items using structured prompts. We evaluate the effects of user history reordering and instructional prompts for mitigating position bias. Experiments on MovieLens-100K show that randomizing user history improves ranking quality, but LLM-based reranking does not outperform the base model. Explicit instructions to reduce position bias are also ineffective. Our evaluations reveal limitations in LLMs' ability to model ranking context and mitigate bias. Our code is publicly available at https://github.com/aminul7506/LLMForReRanking.
Abstract:The gold standard for estimating causal effects is randomized controlled trial (RCT) or A/B testing where a random group of individuals from a population of interest are given treatment and the outcome is compared to a random group of individuals from the same population. However, A/B testing is challenging in the presence of interference, commonly occurring in social networks, where individuals can impact each others outcome. Moreover, A/B testing can incur a high performance loss when one of the treatment arms has a poor performance and the test continues to treat individuals with it. Therefore, it is important to design a strategy that can adapt over time and efficiently learn the total treatment effect in the network. We introduce two cluster-based multi-armed bandit (MAB) algorithms to gradually estimate the total treatment effect in a network while maximizing the expected reward by making a tradeoff between exploration and exploitation. We compare the performance of our MAB algorithms with a vanilla MAB algorithm that ignores clusters and the corresponding RCT methods on semi-synthetic data with simulated interference. The vanilla MAB algorithm shows higher reward-action ratio at the cost of higher treatment effect error due to undesired spillover. The cluster-based MAB algorithms show higher reward-action ratio compared to their corresponding RCT methods without sacrificing much accuracy in treatment effect estimation.
Abstract:Recommender systems relying on contextual multi-armed bandits continuously improve relevant item recommendations by taking into account the contextual information. The objective of these bandit algorithms is to learn the best arm (i.e., best item to recommend) for each user and thus maximize the cumulative rewards from user engagement with the recommendations. However, current approaches ignore potential spillover between interacting users, where the action of one user can impact the actions and rewards of other users. Moreover, spillover may vary for different people based on their preferences and the closeness of ties to other users. This leads to heterogeneity in the spillover effects, i.e., the extent to which the action of one user can impact the action of another. Here, we propose a framework that allows contextual multi-armed bandits to account for such heterogeneous spillovers when choosing the best arm for each user. By experimenting on several real-world datasets using prominent linear and non-linear contextual bandit algorithms, we observe that our proposed method leads to significantly higher rewards than existing solutions that ignore spillover.