Topic:Real Time Instance Segmentation
What is Real Time Instance Segmentation? Real-time instance segmentation is the process of identifying and segmenting individual objects in real time using deep learning techniques.
Papers and Code
Jun 09, 2025
Abstract:Vision-Language Models (VLMs) lag behind Large Language Models due to the scarcity of annotated datasets, as creating paired visual-textual annotations is labor-intensive and expensive. To address this bottleneck, we introduce SAM2Auto, the first fully automated annotation pipeline for video datasets requiring no human intervention or dataset-specific training. Our approach consists of two key components: SMART-OD, a robust object detection system that combines automatic mask generation with open-world object detection capabilities, and FLASH (Frame-Level Annotation and Segmentation Handler), a multi-object real-time video instance segmentation (VIS) that maintains consistent object identification across video frames even with intermittent detection gaps. Unlike existing open-world detection methods that require frame-specific hyperparameter tuning and suffer from numerous false positives, our system employs statistical approaches to minimize detection errors while ensuring consistent object tracking throughout entire video sequences. Extensive experimental validation demonstrates that SAM2Auto achieves comparable accuracy to manual annotation while dramatically reducing annotation time and eliminating labor costs. The system successfully handles diverse datasets without requiring retraining or extensive parameter adjustments, making it a practical solution for large-scale dataset creation. Our work establishes a new baseline for automated video annotation and provides a pathway for accelerating VLM development by addressing the fundamental dataset bottleneck that has constrained progress in vision-language understanding.
Via

Jun 06, 2025
Abstract:This paper addresses the problem of category-level pose estimation for articulated objects in robotic manipulation tasks. Recent works have shown promising results in estimating part pose and size at the category level. However, these approaches primarily follow a complex multi-stage pipeline that first segments part instances in the point cloud and then estimates the Normalized Part Coordinate Space (NPCS) representation for 6D poses. These approaches suffer from high computational costs and low performance in real-time robotic tasks. To address these limitations, we propose YOEO, a single-stage method that simultaneously outputs instance segmentation and NPCS representations in an end-to-end manner. We use a unified network to generate point-wise semantic labels and centroid offsets, allowing points from the same part instance to vote for the same centroid. We further utilize a clustering algorithm to distinguish points based on their estimated centroid distances. Finally, we first separate the NPCS region of each instance. Then, we align the separated regions with the real point cloud to recover the final pose and size. Experimental results on the GAPart dataset demonstrate the pose estimation capabilities of our proposed single-shot method. We also deploy our synthetically-trained model in a real-world setting, providing real-time visual feedback at 200Hz, enabling a physical Kinova robot to interact with unseen articulated objects. This showcases the utility and effectiveness of our proposed method.
* To appear in ICRA 2025
Via

Jun 10, 2025
Abstract:LiDAR segmentation has emerged as an important task to enrich multimedia experiences and analysis. Range-view-based methods have gained popularity due to their high computational efficiency and compatibility with real-time deployment. However, their generalized performance under adverse weather conditions remains underexplored, limiting their reliability in real-world environments. In this work, we identify and analyze the unique challenges that affect the generalization of range-view LiDAR segmentation in severe weather. To address these challenges, we propose a modular and lightweight framework that enhances robustness without altering the core architecture of existing models. Our method reformulates the initial stem block of standard range-view networks into two branches to process geometric attributes and reflectance intensity separately. Specifically, a Geometric Abnormality Suppression (GAS) module reduces the influence of weather-induced spatial noise, and a Reflectance Distortion Calibration (RDC) module corrects reflectance distortions through memory-guided adaptive instance normalization. The processed features are then fused and passed to the original segmentation pipeline. Extensive experiments on different benchmarks and baseline models demonstrate that our approach significantly improves generalization to adverse weather with minimal inference overhead, offering a practical and effective solution for real-world LiDAR segmentation.
Via

May 29, 2025
Abstract:Coral reefs, crucial for sustaining marine biodiversity and ecological processes (e.g., nutrient cycling, habitat provision), face escalating threats, underscoring the need for efficient monitoring. Coral reef ecological monitoring faces dual challenges of low efficiency in manual analysis and insufficient segmentation accuracy in complex underwater scenarios. This study develops the YH-MINER system, establishing an intelligent framework centered on the Multimodal Large Model (MLLM) for "object detection-semantic segmentation-prior input". The system uses the object detection module (mAP@0.5=0.78) to generate spatial prior boxes for coral instances, driving the segment module to complete pixel-level segmentation in low-light and densely occluded scenarios. The segmentation masks and finetuned classification instructions are fed into the Qwen2-VL-based multimodal model as prior inputs, achieving a genus-level classification accuracy of 88% and simultaneously extracting core ecological metrics. Meanwhile, the system retains the scalability of the multimodal model through standardized interfaces, laying a foundation for future integration into multimodal agent-based underwater robots and supporting the full-process automation of "image acquisition-prior generation-real-time analysis".
Via

May 21, 2025
Abstract:Mapping and understanding complex 3D environments is fundamental to how autonomous systems perceive and interact with the physical world, requiring both precise geometric reconstruction and rich semantic comprehension. While existing 3D semantic mapping systems excel at reconstructing and identifying predefined object instances, they lack the flexibility to efficiently build semantic maps with open-vocabulary during online operation. Although recent vision-language models have enabled open-vocabulary object recognition in 2D images, they haven't yet bridged the gap to 3D spatial understanding. The critical challenge lies in developing a training-free unified system that can simultaneously construct accurate 3D maps while maintaining semantic consistency and supporting natural language interactions in real time. In this paper, we develop a zero-shot framework that seamlessly integrates GPU-accelerated geometric reconstruction with open-vocabulary vision-language models through online instance-level semantic embedding fusion, guided by hierarchical object association with spatial indexing. Our training-free system achieves superior performance through incremental processing and unified geometric-semantic updates, while robustly handling 2D segmentation inconsistencies. The proposed general-purpose 3D scene understanding framework can be used for various tasks including zero-shot 3D instance retrieval, segmentation, and object detection to reason about previously unseen objects and interpret natural language queries. The project page is available at https://razer-3d.github.io.
Via

May 20, 2025
Abstract:Pre-training on real-image datasets has been widely proven effective for improving instance segmentation. However, industrial applications face two key challenges: (1) legal and ethical restrictions, such as ImageNet's prohibition of commercial use, and (2) limited transferability due to the domain gap between web images and industrial imagery. Even recent vision foundation models, including the segment anything model (SAM), show notable performance degradation in industrial settings. These challenges raise critical questions: Can we build a vision foundation model for industrial applications without relying on real images or manual annotations? And can such models outperform even fine-tuned SAM on industrial datasets? To address these questions, we propose the Instance Core Segmentation Dataset (InsCore), a synthetic pre-training dataset based on formula-driven supervised learning (FDSL). InsCore generates fully annotated instance segmentation images that reflect key characteristics of industrial data, including complex occlusions, dense hierarchical masks, and diverse non-rigid shapes, distinct from typical web imagery. Unlike previous methods, InsCore requires neither real images nor human annotations. Experiments on five industrial datasets show that models pre-trained with InsCore outperform those trained on COCO and ImageNet-21k, as well as fine-tuned SAM, achieving an average improvement of 6.2 points in instance segmentation performance. This result is achieved using only 100k synthetic images, more than 100 times fewer than the 11 million images in SAM's SA-1B dataset, demonstrating the data efficiency of our approach. These findings position InsCore as a practical and license-free vision foundation model for industrial applications.
Via

May 19, 2025
Abstract:Pre-training on real-image datasets has been widely proven effective for improving instance segmentation. However, industrial applications face two key challenges: (1) legal and ethical restrictions, such as ImageNet's prohibition of commercial use, and (2) limited transferability due to the domain gap between web images and industrial imagery. Even recent vision foundation models, including the segment anything model (SAM), show notable performance degradation in industrial settings. These challenges raise critical questions: Can we build a vision foundation model for industrial applications without relying on real images or manual annotations? And can such models outperform even fine-tuned SAM on industrial datasets? To address these questions, we propose the Instance Core Segmentation Dataset (InsCore), a synthetic pre-training dataset based on formula-driven supervised learning (FDSL). InsCore generates fully annotated instance segmentation images that reflect key characteristics of industrial data, including complex occlusions, dense hierarchical masks, and diverse non-rigid shapes, distinct from typical web imagery. Unlike previous methods, InsCore requires neither real images nor human annotations. Experiments on five industrial datasets show that models pre-trained with InsCore outperform those trained on COCO and ImageNet-21k, as well as fine-tuned SAM, achieving an average improvement of 6.2 points in instance segmentation performance. This result is achieved using only 100k synthetic images, more than 100 times fewer than the 11 million images in SAM's SA-1B dataset, demonstrating the data efficiency of our approach. These findings position InsCore as a practical and license-free vision foundation model for industrial applications.
Via

May 14, 2025
Abstract:This research investigates the application of computer vision for rapid, accurate, and non-invasive food quality assessment, focusing on the novel challenge of real-time raspberry grading into five distinct classes within an industrial environment as the fruits move along a conveyor belt. To address this, a dedicated dataset of raspberries, namely RaspGrade, was acquired and meticulously annotated. Instance segmentation experiments revealed that accurate fruit-level masks can be obtained; however, the classification of certain raspberry grades presents challenges due to color similarities and occlusion, while others are more readily distinguishable based on color. The acquired and annotated RaspGrade dataset is accessible on Hugging Face at: https://huggingface.co/datasets/FBK-TeV/RaspGrade.
Via

May 17, 2025
Abstract:The Segment Anything Model (SAM) is a powerful foundation model for image segmentation, showing robust zero-shot generalization through prompt engineering. However, relying on manual prompts is impractical for real-world applications, particularly in scenarios where rapid prompt provision and resource efficiency are crucial. In this paper, we propose the Automation of Prompts for SAM (AoP-SAM), a novel approach that learns to generate essential prompts in optimal locations automatically. AoP-SAM enhances SAM's efficiency and usability by eliminating manual input, making it better suited for real-world tasks. Our approach employs a lightweight yet efficient Prompt Predictor model that detects key entities across images and identifies the optimal regions for placing prompt candidates. This method leverages SAM's image embeddings, preserving its zero-shot generalization capabilities without requiring fine-tuning. Additionally, we introduce a test-time instance-level Adaptive Sampling and Filtering mechanism that generates prompts in a coarse-to-fine manner. This notably enhances both prompt and mask generation efficiency by reducing computational overhead and minimizing redundant mask refinements. Evaluations of three datasets demonstrate that AoP-SAM substantially improves both prompt generation efficiency and mask generation accuracy, making SAM more effective for automated segmentation tasks.
* Accepted at AAAI 2025
Via

May 12, 2025
Abstract:Semantic anomalies are contextually invalid or unusual combinations of familiar visual elements that can cause undefined behavior and failures in system-level reasoning for autonomous systems. This work explores semantic anomaly detection by leveraging the semantic priors of state-of-the-art vision foundation models, operating directly on the image. We propose a framework that compares local vision embeddings from runtime images to a database of nominal scenarios in which the autonomous system is deemed safe and performant. In this work, we consider two variants of the proposed framework: one using raw grid-based embeddings, and another leveraging instance segmentation for object-centric representations. To further improve robustness, we introduce a simple filtering mechanism to suppress false positives. Our evaluations on CARLA-simulated anomalies show that the instance-based method with filtering achieves performance comparable to GPT-4o, while providing precise anomaly localization. These results highlight the potential utility of vision embeddings from foundation models for real-time anomaly detection in autonomous systems.
* Accepted for the Workshop "Safely Leveraging Vision-Language
Foundation Models in Robotics: Challenges and Opportunities" at ICRA 2025
Via
