One Shot Object Detection


One-shot object detection is the process of detecting objects in images with only one labeled example per class.

OOVDet: Low-Density Prior Learning for Zero-Shot Out-of-Vocabulary Object Detection

Add code
Jan 30, 2026
Viaarxiv icon

Training Free Zero-Shot Visual Anomaly Localization via Diffusion Inversion

Add code
Jan 12, 2026
Viaarxiv icon

CoDi -- an exemplar-conditioned diffusion model for low-shot counting

Add code
Dec 23, 2025
Viaarxiv icon

Recurrent Cross-View Object Geo-Localization

Add code
Sep 16, 2025
Viaarxiv icon

JVLGS: Joint Vision-Language Gas Leak Segmentation

Add code
Aug 27, 2025
Viaarxiv icon

Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models

Add code
May 27, 2025
Viaarxiv icon

Context in object detection: a systematic literature review

Add code
Mar 29, 2025
Viaarxiv icon

MetaUAS: Universal Anomaly Segmentation with One-Prompt Meta-Learning

Add code
May 14, 2025
Viaarxiv icon

Electrolyzers-HSI: Close-Range Multi-Scene Hyperspectral Imaging Benchmark Dataset

Add code
May 26, 2025
Figure 1 for Electrolyzers-HSI: Close-Range Multi-Scene Hyperspectral Imaging Benchmark Dataset
Figure 2 for Electrolyzers-HSI: Close-Range Multi-Scene Hyperspectral Imaging Benchmark Dataset
Figure 3 for Electrolyzers-HSI: Close-Range Multi-Scene Hyperspectral Imaging Benchmark Dataset
Figure 4 for Electrolyzers-HSI: Close-Range Multi-Scene Hyperspectral Imaging Benchmark Dataset
Viaarxiv icon

Grounded Task Axes: Zero-Shot Semantic Skill Generalization via Task-Axis Controllers and Visual Foundation Models

Add code
May 16, 2025
Viaarxiv icon