One Shot Object Detection


One-shot object detection is the process of detecting objects in images with only one labeled example per class.

Roboflow100-VL: A Multi-Domain Object Detection Benchmark for Vision-Language Models

Add code
May 27, 2025
Viaarxiv icon

Electrolyzers-HSI: Close-Range Multi-Scene Hyperspectral Imaging Benchmark Dataset

Add code
May 26, 2025
Viaarxiv icon

Grounded Task Axes: Zero-Shot Semantic Skill Generalization via Task-Axis Controllers and Visual Foundation Models

Add code
May 16, 2025
Viaarxiv icon

MetaUAS: Universal Anomaly Segmentation with One-Prompt Meta-Learning

Add code
May 14, 2025
Viaarxiv icon

Can We Ignore Labels In Out of Distribution Detection?

Add code
Apr 20, 2025
Viaarxiv icon

Perception Encoder: The best visual embeddings are not at the output of the network

Add code
Apr 17, 2025
Viaarxiv icon

Context in object detection: a systematic literature review

Add code
Mar 29, 2025
Viaarxiv icon

PRISM-0: A Predicate-Rich Scene Graph Generation Framework for Zero-Shot Open-Vocabulary Tasks

Add code
Apr 01, 2025
Viaarxiv icon

Incremental Object Keypoint Learning

Add code
Mar 26, 2025
Viaarxiv icon

The Power of One: A Single Example is All it Takes for Segmentation in VLMs

Add code
Mar 13, 2025
Viaarxiv icon