Abstract:Transferring skills between different objects remains one of the core challenges of open-world robot manipulation. Generalization needs to take into account the high-level structural differences between distinct objects while still maintaining similar low-level interaction control. In this paper, we propose an example-based zero-shot approach to skill transfer. Rather than treating skills as atomic, we decompose skills into a prioritized list of grounded task-axis (GTA) controllers. Each GTAC defines an adaptable controller, such as a position or force controller, along an axis. Importantly, the GTACs are grounded in object key points and axes, e.g., the relative position of a screw head or the axis of its shaft. Zero-shot transfer is thus achieved by finding semantically-similar grounding features on novel target objects. We achieve this example-based grounding of the skills through the use of foundation models, such as SD-DINO, that can detect semantically similar keypoints of objects. We evaluate our framework on real-robot experiments, including screwing, pouring, and spatula scraping tasks, and demonstrate robust and versatile controller transfer for each.
Abstract:As factories continue to evolve into collaborative spaces with multiple robots working together with human supervisors in the loop, ensuring safety for all actors involved becomes critical. Currently, laser-based light curtain sensors are widely used in factories for safety monitoring. While these conventional safety sensors meet high accuracy standards, they are difficult to reconfigure and can only monitor a fixed user-defined region of space. Furthermore, they are typically expensive. Instead, we leverage a controllable depth sensor, programmable light curtains (PLC), to develop an inexpensive and flexible real-time safety monitoring system for collaborative robot workspaces. Our system projects virtual dynamic safety envelopes that tightly envelop the moving robot at all times and detect any objects that intrude the envelope. Furthermore, we develop an instrumentation algorithm that optimally places (multiple) PLCs in a workspace to maximize the visibility coverage of robots. Our work enables fence-less human-robot collaboration, while scaling to monitor multiple robots with few sensors. We analyze our system in a real manufacturing testbed with four robot arms and demonstrate its capabilities as a fast, accurate, and inexpensive safety monitoring solution.