resolution.To address these limitations, this paper presents an improved autonomous target detection network based on YOLOv8. By integrating structural reparameterization technology, a bidirectional pyramid structure network model, and a novel detection pipeline into the YOLOv8 framework, the proposed approach achieves highly efficient and precise detection of multi-scale, small, and remote objects. Experimental results demonstrate that the enhanced model can effectively detect both large and small objects with a detection accuracy of 65%, showcasing significant advancements over traditional methods.This improved model holds substantial potential for real-world applications and is well-suited for autonomous driving competitions, such as the Formula Student Autonomous China (FSAC), particularly excelling in scenarios involving single-target and small-object detection.
https://github.com/open_upon_acceptance.
detection.To address these challenges, we specifically propose a Detection Transformer (DETR) architecture optimized with a Neural Architecture Search (NAS) approach called NAS-DETR for object detection in sonar images. First, an improved Zero-shot Neural Architecture Search (NAS) method based on the maximum entropy principle is proposed to identify a real-time, high-representational-capacity CNN-Transformer backbone for sonar image detection. This method enables the efficient discovery of high-performance network architectures with low computational and time overhead. Subsequently, the backbone is combined with a Feature Pyramid Network (FPN) and a deformable attention-based Transformer decoder to construct a complete network architecture. This architecture integrates various advanced components and training schemes to enhance overall performance. Extensive experiments demonstrate that this architecture achieves state-of-the-art performance on two Representative datasets, while maintaining minimal overhead in real-time efficiency and computational complexity. Furthermore, correlation analysis between the key parameters and differential entropy-based fitness function is performed to enhance the interpretability of the proposed framework. To the best of our knowledge, this is the first work in the field of sonar object detection to integrate the DETR architecture with a NAS search mechanism.
https://github.com/MiliLab/TiMo.
https://github.com/qinhongda8/LDDS.