Abstract:In this paper, we address a novel image restoration problem relevant to machine learning dataset curation: the detection and removal of noisy mirrored padding artifacts. While data augmentation techniques like padding are necessary for standardizing image dimensions, they can introduce artifacts that degrade model evaluation when datasets are repurposed across domains. We propose a systematic algorithm to precisely delineate the reflection boundary through a minimum mean squared error approach with thresholding and remove reflective padding. Our method effectively identifies the transition between authentic content and its mirrored counterpart, even in the presence of compression or interpolation noise. We demonstrate our algorithm's efficacy on the SHEL5k dataset, showing significant performance improvements in zero-shot object detection tasks using OWLv2, with average precision increasing from 0.47 to 0.61 for hard hat detection and from 0.68 to 0.73 for person detection. By addressing annotation inconsistencies and distorted objects in padded regions, our approach enhances dataset integrity, enabling more reliable model evaluation across computer vision tasks.
Abstract:This paper evaluates the use of vision-language models (VLMs) for zero-shot detection and association of hardhats to enhance construction safety. Given the significant risk of head injuries in construction, proper enforcement of hardhat use is critical. We investigate the applicability of foundation models, specifically OWLv2, for detecting hardhats in real-world construction site images. Our contributions include the creation of a new benchmark dataset, Hardhat Safety Detection Dataset, by filtering and combining existing datasets and the development of a cascaded detection approach. Experimental results on 5,210 images demonstrate that the OWLv2 model achieves an average precision of 0.6493 for hardhat detection. We further analyze the limitations and potential improvements for real-world applications, highlighting the strengths and weaknesses of current foundation models in safety perception domains.
Abstract:Motorcycle accidents pose significant risks, particularly when riders and passengers do not wear helmets. This study evaluates the efficacy of an advanced vision-language foundation model, OWLv2, in detecting and classifying various helmet-wearing statuses of motorcycle occupants using video data. We extend the dataset provided by the CVPR AI City Challenge and employ a cascaded model approach for detection and classification tasks, integrating OWLv2 and CNN models. The results highlight the potential of zero-shot learning to address challenges arising from incomplete and biased training datasets, demonstrating the usage of such models in detecting motorcycles, helmet usage, and occupant positions under varied conditions. We have achieved an average precision of 0.5324 for helmet detection and provided precision-recall curves detailing the detection and classification performance. Despite limitations such as low-resolution data and poor visibility, our research shows promising advancements in automated vehicle safety and traffic safety enforcement systems.