Layout-to-image generation is the process of generating images from layout descriptions using deep learning techniques.
SAM3D enables scalable, open-world 3D reconstruction from complex scenes, yet its deployment is hindered by prohibitive inference latency. In this work, we conduct the \textbf{first systematic investigation} into its inference dynamics, revealing that generic acceleration strategies are brittle in this context. We demonstrate that these failures stem from neglecting the pipeline's inherent multi-level \textbf{heterogeneity}: the kinematic distinctiveness between shape and layout, the intrinsic sparsity of texture refinement, and the spectral variance across geometries. To address this, we present \textbf{Fast-SAM3D}, a training-free framework that dynamically aligns computation with instantaneous generation complexity. Our approach integrates three heterogeneity-aware mechanisms: (1) \textit{Modality-Aware Step Caching} to decouple structural evolution from sensitive layout updates; (2) \textit{Joint Spatiotemporal Token Carving} to concentrate refinement on high-entropy regions; and (3) \textit{Spectral-Aware Token Aggregation} to adapt decoding resolution. Extensive experiments demonstrate that Fast-SAM3D delivers up to \textbf{2.67$\times$} end-to-end speedup with negligible fidelity loss, establishing a new Pareto frontier for efficient single-view 3D generation. Our code is released in https://github.com/wlfeng0509/Fast-SAM3D.
Semantic segmentation of high-resolution remote-sensing imagery is critical for urban mapping and land-cover monitoring, yet training data typically exhibits severe long-tailed pixel imbalance. In the dataset LoveDA, this challenge is compounded by an explicit Urban/Rural split with distinct appearance and inconsistent class-frequency statistics across domains. We present a prompt-controlled diffusion augmentation framework that synthesizes paired label--image samples with explicit control of both domain and semantic composition. Stage~A uses a domain-aware, masked ratio-conditioned discrete diffusion model to generate layouts that satisfy user-specified class-ratio targets while respecting learned co-occurrence structure. Stage~B translates layouts into photorealistic, domain-consistent images using Stable Diffusion with ControlNet guidance. Mixing the resulting ratio and domain-controlled synthetic pairs with real data yields consistent improvements across multiple segmentation backbones, with gains concentrated on minority classes and improved Urban and Rural generalization, demonstrating controllable augmentation as a practical mechanism to mitigate long-tail bias in remote-sensing segmentation. Source codes, pretrained models, and synthetic datasets are available at \href{https://github.com/Buddhi19/SyntheticGen.git}{Github}
Logical anomalies are violations of predefined constraints on object quantity, spatial layout, and compositional relationships in industrial images. While prior work largely treats anomaly detection as a binary decision, such formulations cannot indicate which logical rule is broken and therefore offer limited value for quality assurance. We introduce Logical Anomaly Classification (LAC), a task that unifies anomaly detection and fine-grained violation classification in a single inference step. To tackle LAC, we propose LogiCls, a vision-language framework that decomposes complex logical constraints into a sequence of verifiable subqueries. We further present a data-centric instruction synthesis pipeline that generates chain-of-thought (CoT) supervision for these subqueries, coupling precise grounding annotations with diverse image-text augmentations to adapt vision language models (VLMs) to logic-sensitive reasoning. Training is stabilized by a difficulty-aware resampling strategy that emphasizes challenging subqueries and long tail constraint types. Extensive experiments demonstrate that LogiCls delivers robust, interpretable, and accurate industrial logical anomaly classification, providing both the predicted violation categories and their evidence trails.
World models have demonstrated significant promise for data synthesis in autonomous driving. However, existing methods predominantly concentrate on single-modality generation, typically focusing on either multi-camera video or LiDAR sequence synthesis. In this paper, we propose UniDriveDreamer, a single-stage unified multimodal world model for autonomous driving, which directly generates multimodal future observations without relying on intermediate representations or cascaded modules. Our framework introduces a LiDAR-specific variational autoencoder (VAE) designed to encode input LiDAR sequences, alongside a video VAE for multi-camera images. To ensure cross-modal compatibility and training stability, we propose Unified Latent Anchoring (ULA), which explicitly aligns the latent distributions of the two modalities. The aligned features are fused and processed by a diffusion transformer that jointly models their geometric correspondence and temporal evolution. Additionally, structured scene layout information is projected per modality as a conditioning signal to guide the synthesis. Extensive experiments demonstrate that UniDriveDreamer outperforms previous state-of-the-art methods in both video and LiDAR generation, while also yielding measurable improvements in downstream
Recent advances in generative AI have dramatically improved photorealistic image synthesis, yet they fall short for studio-level multi-object compositing. This task demands simultaneous (i) near-perfect preservation of each item's identity, (ii) precise background and color fidelity, (iii) layout and design elements control, and (iv) complete, appealing displays showcasing all objects. However, current state-of-the-art models often alter object details, omit or duplicate objects, and produce layouts with incorrect relative sizing or inconsistent item presentations. To bridge this gap, we introduce PLACID, a framework that transforms a collection of object images into an appealing multi-object composite. Our approach makes two main contributions. First, we leverage a pretrained image-to-video (I2V) diffusion model with text control to preserve objects consistency, identities, and background details by exploiting temporal priors from videos. Second, we propose a novel data curation strategy that generates synthetic sequences where randomly placed objects smoothly move to their target positions. This synthetic data aligns with the video model's temporal priors during training. At inference, objects initialized at random positions consistently converge into coherent layouts guided by text, with the final frame serving as the composite image. Extensive quantitative evaluations and user studies demonstrate that PLACID surpasses state-of-the-art methods in multi-object compositing, achieving superior identity, background, and color preservation, with less omitted objects and visually appealing results.
Recent advancements in Generative Artificial Intelligence (GenAI) have significantly enhanced the capabilities of both image generation and editing. However, current approaches often treat these tasks separately, leading to inefficiencies and challenges in maintaining spatial consistency and semantic coherence between generated content and edits. Moreover, a major obstacle is the lack of structured control over object relationships and spatial arrangements. Scene graph-based methods, which represent objects and their interrelationships in a structured format, offer a solution by providing greater control over composition and interactions in both image generation and editing. To address this, we introduce SimGraph, a unified framework that integrates scene graph-based image generation and editing, enabling precise control over object interactions, layouts, and spatial coherence. In particular, our framework integrates token-based generation and diffusion-based editing within a single scene graph-driven model, ensuring high-quality and consistent results. Through extensive experiments, we empirically demonstrate that our approach outperforms existing state-of-the-art methods.
Unified Multimodal Models (UMMs) integrate both visual understanding and generation within a single framework. Their ultimate aspiration is to create a cycle where understanding and generation mutually reinforce each other. While recent post-training methods have successfully leveraged understanding to enhance generation, the reverse direction of utilizing generation to improve understanding remains largely unexplored. In this work, we propose UniMRG (Unified Multi-Representation Generation), a simple yet effective architecture-agnostic post-training method. UniMRG enhances the understanding capabilities of UMMs by incorporating auxiliary generation tasks. Specifically, we train UMMs to generate multiple intrinsic representations of input images, namely pixel (reconstruction), depth (geometry), and segmentation (structure), alongside standard visual understanding objectives. By synthesizing these diverse representations, UMMs capture complementary information regarding appearance, spatial relations, and structural layout. Consequently, UMMs develop a deeper and more comprehensive understanding of visual inputs. Extensive experiments across diverse UMM architectures demonstrate that our method notably enhances fine-grained perception, reduces hallucinations, and improves spatial understanding, while simultaneously boosting generation capabilities.
As social media platforms proliferate, users increasingly demand intuitive ways to create diverse, high-quality portrait collections. In this work, we introduce Portrait Collection Generation (PCG), a novel task that generates coherent portrait collections by editing a reference portrait image through natural language instructions. This task poses two unique challenges to existing methods: (1) complex multi-attribute modifications such as pose, spatial layout, and camera viewpoint; and (2) high-fidelity detail preservation including identity, clothing, and accessories. To address these challenges, we propose CHEESE, the first large-scale PCG dataset containing 24K portrait collections and 573K samples with high-quality modification text annotations, constructed through an Large Vison-Language Model-based pipeline with inversion-based verification. We further propose SCheese, a framework that combines text-guided generation with hierarchical identity and detail preservation. SCheese employs adaptive feature fusion mechanism to maintain identity consistency, and ConsistencyNet to inject fine-grained features for detail consistency. Comprehensive experiments validate the effectiveness of CHEESE in advancing PCG, with SCheese achieving state-of-the-art performance.
Text-to-image (T2I) models have achieved remarkable success in generating high-fidelity images, but they often fail in handling complex spatial relationships, e.g., spatial perception, reasoning, or interaction. These critical aspects are largely overlooked by current benchmarks due to their short or information-sparse prompt design. In this paper, we introduce SpatialGenEval, a new benchmark designed to systematically evaluate the spatial intelligence of T2I models, covering two key aspects: (1) SpatialGenEval involves 1,230 long, information-dense prompts across 25 real-world scenes. Each prompt integrates 10 spatial sub-domains and corresponding 10 multi-choice question-answer pairs, ranging from object position and layout to occlusion and causality. Our extensive evaluation of 21 state-of-the-art models reveals that higher-order spatial reasoning remains a primary bottleneck. (2) To demonstrate that the utility of our information-dense design goes beyond simple evaluation, we also construct the SpatialT2I dataset. It contains 15,400 text-image pairs with rewritten prompts to ensure image consistency while preserving information density. Fine-tuned results on current foundation models (i.e., Stable Diffusion-XL, Uniworld-V1, OmniGen2) yield consistent performance gains (+4.2%, +5.7%, +4.4%) and more realistic effects in spatial relations, highlighting a data-centric paradigm to achieve spatial intelligence in T2I models.
World generation is a fundamental capability for applications like video games, simulation, and robotics. However, existing approaches face three main obstacles: controllability, scalability, and efficiency. End-to-end scene generation models have been limited by data scarcity. While object-centric generation approaches rely on fixed resolution representations, degrading fidelity for larger scenes. Training-free approaches, while flexible, are often slow and computationally expensive at inference time. We present NuiWorld, a framework that attempts to address these challenges. To overcome data scarcity, we propose a generative bootstrapping strategy that starts from a few input images. Leveraging recent 3D reconstruction and expandable scene generation techniques, we synthesize scenes of varying sizes and layouts, producing enough data to train an end-to-end model. Furthermore, our framework enables controllability through pseudo sketch labels, and demonstrates a degree of generalization to previously unseen sketches. Our approach represents scenes as a collection of variable scene chunks, which are compressed into a flattened vector-set representation. This significantly reduces the token length for large scenes, enabling consistent geometric fidelity across scenes sizes while improving training and inference efficiency.