Abstract:Text-to-image diffusion models have achieved remarkable image quality, but they still struggle with complex, multiele ment prompts, and limited stylistic diversity. To address these limitations, we propose a Multi-Expert Planning and Gen eration Framework (MEPG) that synergistically integrates position- and style-aware large language models (LLMs) with spatial-semantic expert modules. The framework comprises two core components: (1) a Position-Style-Aware (PSA) module that utilizes a supervised fine-tuned LLM to decom pose input prompts into precise spatial coordinates and style encoded semantic instructions; and (2) a Multi-Expert Dif fusion (MED) module that implements cross-region genera tion through dynamic expert routing across both local regions and global areas. During the generation process for each lo cal region, specialized models (e.g., realism experts, styliza tion specialists) are selectively activated for each spatial par tition via attention-based gating mechanisms. The architec ture supports lightweight integration and replacement of ex pert models, providing strong extensibility. Additionally, an interactive interface enables real-time spatial layout editing and per-region style selection from a portfolio of experts. Ex periments show that MEPG significantly outperforms base line models with the same backbone in both image quality and style diversity.
Abstract:Text-to-image generation has greatly advanced content creation, yet accurately rendering visual text remains a key challenge due to blurred glyphs, semantic drift, and limited style control. Existing methods often rely on pre-rendered glyph images as conditions, but these struggle to retain original font styles and color cues, necessitating complex multi-branch designs that increase model overhead and reduce flexibility. To address these issues, we propose a segmentation-guided framework that uses pixel-level visual text masks -- rich in glyph shape, color, and spatial detail -- as unified conditional inputs. Our method introduces two core components: (1) a fine-tuned bilingual segmentation model for precise text mask extraction, and (2) a streamlined diffusion model augmented with adaptive glyph conditioning and a region-specific loss to preserve textual fidelity in both content and style. Our approach achieves state-of-the-art performance on the AnyText benchmark, significantly surpassing prior methods in both Chinese and English settings. To enable more rigorous evaluation, we also introduce two new benchmarks: GlyphMM-benchmark for testing layout and glyph consistency in complex typesetting, and MiniText-benchmark for assessing generation quality in small-scale text regions. Experimental results show that our model outperforms existing methods by a large margin in both scenarios, particularly excelling at small text rendering and complex layout preservation, validating its strong generalization and deployment readiness.