Large scale person re-identification is the process of identifying and tracking individuals across multiple cameras or locations.
The rise of generative models has led to increased use of large-scale datasets collected from the internet, often with minimal or no data curation. This raises concerns about the inclusion of sensitive or private information. In this work, we explore the presence of pregnancy ultrasound images, which contain sensitive personal information and are often shared online. Through a systematic examination of LAION-400M dataset using CLIP embedding similarity, we retrieve images containing pregnancy ultrasound and detect thousands of entities of private information such as names and locations. Our findings reveal that multiple images have high-risk information that could enable re-identification or impersonation. We conclude with recommended practices for dataset curation, data privacy, and ethical use of public image datasets.
Aerial-ground person re-identification (AG-ReID) is fundamentally challenged by extreme viewpoint and distance discrepancies between aerial and ground cameras, which induce severe geometric distortions and invalidate the assumption of a shared similarity space across views. Existing methods primarily rely on geometry-aware feature learning or appearance-conditioned prompting, while implicitly assuming that the geometry-invariant dot-product similarity used in attention mechanisms remains reliable under large viewpoint and scale variations. We argue that this assumption does not hold. Extreme camera geometry systematically distorts the query-key similarity space and degrades attention-based matching, even when feature representations are partially aligned. To address this issue, we introduce Geometry-Induced Query-Key Transformation (GIQT), a lightweight low-rank module that explicitly rectifies the similarity space by conditioning query-key interactions on camera geometry. Rather than modifying feature representations or the attention formulation itself, GIQT adapts the similarity computation to compensate for dominant geometry-induced anisotropic distortions. Building on this local similarity rectification, we further incorporate a geometry-conditioned prompt generation mechanism that provides global, view-adaptive representation priors derived directly from camera geometry. Experiments on four aerial-ground person re-identification benchmarks demonstrate that the proposed framework consistently improves robustness under extreme and previously unseen geometric conditions, while introducing minimal computational overhead compared to state-of-the-art methods.
The core of video-based visible-infrared person re-identification (VVI-ReID) lies in learning sequence-level modal-invariant representations across different modalities. Recent research tends to use modality-shared language prompts generated by CLIP to guide the learning of modal-invariant representations. Despite achieving optimal performance, such methods still face limitations in efficient spatial-temporal modeling, sufficient cross-modal interaction, and explicit modality-level loss guidance. To address these issues, we propose the language-driven sequence-level modal-invariant representation learning (LSMRL) method, which includes spatial-temporal feature learning (STFL) module, semantic diffusion (SD) module and cross-modal interaction (CMI) module. To enable parameter- and computation-efficient spatial-temporal modeling, the STFL module is built upon CLIP with minimal modifications. To achieve sufficient cross-modal interaction and enhance the learning of modal-invariant features, the SD module is proposed to diffuse modality-shared language prompts into visible and infrared features to establish preliminary modal consistency. The CMI module is further developed to leverage bidirectional cross-modal self-attention to eliminate residual modality gaps and refine modal-invariant representations. To explicitly enhance the learning of modal-invariant representations, two modality-level losses are introduced to improve the features' discriminative ability and their generalization to unseen categories. Extensive experiments on large-scale VVI-ReID datasets demonstrate the superiority of LSMRL over AOTA methods.
Lifelong person Re-IDentification (L-ReID) exploits sequentially collected data to continuously train and update a ReID model, focusing on the overall performance of all data. Its main challenge is to avoid the catastrophic forgetting problem of old knowledge while training on new data. Existing L-ReID methods typically re-extract new features for all historical gallery images for inference after each update, known as "re-indexing". However, historical gallery data typically suffers from direct saving due to the data privacy issue and the high re-indexing costs for large-scale gallery images. As a result, it inevitably leads to incompatible retrieval between query features extracted by the updated model and gallery features extracted by those before the update, greatly impairing the re-identification performance. To tackle the above issue, this paper focuses on a new task called Re-index Free Lifelong person Re-IDentification (RFL-ReID), which requires performing lifelong person re-identification without re-indexing historical gallery images. Therefore, RFL-ReID is more challenging than L-ReID, requiring continuous learning and balancing new and old knowledge in diverse streaming data, and making the features output by the new and old models compatible with each other. To this end, we propose a Bidirectional Continuous Compatible Representation (Bi-C2R) framework to continuously update the gallery features extracted by the old model to perform efficient L-ReID in a compatible manner. We verify our proposed Bi-C2R method through theoretical analysis and extensive experiments on multiple benchmarks, which demonstrate that the proposed method can achieve leading performance on both the introduced RFL-ReID task and the traditional L-ReID task.
Person re-identification (ReID) plays a critical role in intelligent surveillance systems by linking identities across multiple cameras in complex environments. However, ReID faces significant challenges such as appearance variations, domain shifts, and limited labeled data. This dissertation proposes three advanced approaches to enhance ReID performance under supervised, unsupervised domain adaptation (UDA), and fully unsupervised settings. First, SCM-ReID integrates supervised contrastive learning with hybrid loss optimization (classification, center, triplet, and centroid-triplet losses), improving discriminative feature representation and achieving state-of-the-art accuracy on Market-1501 and CUHK03 datasets. Second, for UDA, IQAGA and DAPRH combine GAN-based image augmentation, domain-invariant mapping, and pseudo-label refinement to mitigate domain discrepancies and enhance cross-domain generalization. Experiments demonstrate substantial gains over baseline methods, with mAP and Rank-1 improvements up to 12% in challenging transfer scenarios. Finally, ViTC-UReID leverages Vision Transformer-based feature encoding and camera-aware proxy learning to boost unsupervised ReID. By integrating global and local attention with camera identity constraints, this method significantly outperforms existing unsupervised approaches on large-scale benchmarks. Comprehensive evaluations across CUHK03, Market-1501, DukeMTMC-reID, and MSMT17 confirm the effectiveness of the proposed methods. The contributions advance ReID research by addressing key limitations in feature learning, domain adaptation, and label noise handling, paving the way for robust deployment in real-world surveillance systems.
State-of-the-art person re-identification methods achieve impressive accuracy but remain largely opaque, leaving open the question: which high-level semantic attributes do these models actually rely on? We propose MoSAIC-ReID, a Mixture-of-Experts framework that systematically quantifies the importance of pedestrian attributes for re-identification. Our approach uses LoRA-based experts, each linked to a single attribute, and an oracle router that enables controlled attribution analysis. While MoSAIC-ReID achieves competitive performance on Market-1501 and DukeMTMC under the assumption that attribute annotations are available at test time, its primary value lies in providing a large-scale, quantitative study of attribute importance across intrinsic and extrinsic cues. Using generalized linear models, statistical tests, and feature-importance analyses, we reveal which attributes, such as clothing colors and intrinsic characteristics, contribute most strongly, while infrequent cues (e.g. accessories) have limited effect. This work offers a principled framework for interpretable ReID and highlights the requirements for integrating explicit semantic knowledge in practice. Code is available at https://github.com/psaltaath/MoSAIC-ReID




With growing concerns over data privacy, researchers have started using virtual data as an alternative to sensitive real-world images for training person re-identification (Re-ID) models. However, existing virtual datasets produced by game engines still face challenges such as complex construction and poor domain generalization, making them difficult to apply in real scenarios. To address these challenges, we propose a Dual-stage Prompt-driven Privacy-preserving Paradigm (DPPP). In the first stage, we generate rich prompts incorporating multi-dimensional attributes such as pedestrian appearance, illumination, and viewpoint that drive the diffusion model to synthesize diverse data end-to-end, building a large-scale virtual dataset named GenePerson with 130,519 images of 6,641 identities. In the second stage, we propose a Prompt-driven Disentanglement Mechanism (PDM) to learn domain-invariant generalization features. With the aid of contrastive learning, we employ two textual inversion networks to map images into pseudo-words representing style and content, respectively, thereby constructing style-disentangled content prompts to guide the model in learning domain-invariant content features at the image level. Experiments demonstrate that models trained on GenePerson with PDM achieve state-of-the-art generalization performance, surpassing those on popular real and virtual Re-ID datasets.




In person re-identification, re-ranking is a crucial step to enhance the overall accuracy by refining the initial ranking of retrieved results. Previous studies have mainly focused on features from single-view images, which can cause view bias and issues like pose variation, viewpoint changes, and occlusions. Using multi-view features to present a person can help reduce view bias. In this work, we present an efficient re-ranking method that generates multi-view features by aggregating neighbors' features using K-nearest Weighted Fusion (KWF) method. Specifically, we hypothesize that features extracted from re-identification models are highly similar when representing the same identity. Thus, we select K neighboring features in an unsupervised manner to generate multi-view features. Additionally, this study explores the weight selection strategies during feature aggregation, allowing us to identify an effective strategy. Our re-ranking approach does not require model fine-tuning or extra annotations, making it applicable to large-scale datasets. We evaluate our method on the person re-identification datasets Market1501, MSMT17, and Occluded-DukeMTMC. The results show that our method significantly improves Rank@1 and mAP when re-ranking the top M candidates from the initial ranking results. Specifically, compared to the initial results, our re-ranking method achieves improvements of 9.8%/22.0% in Rank@1 on the challenging datasets: MSMT17 and Occluded-DukeMTMC, respectively. Furthermore, our approach demonstrates substantial enhancements in computational efficiency compared to other re-ranking methods.




Person re-identification (Re-ID) is a fundamental task in intelligent surveillance and public safety. Federated learning (FL) offers a privacy-preserving solution by enabling collaborative model training without centralized data collection. However, applying FL to real-world re-ID systems faces two major challenges: statistical heterogeneity across clients due to non-IID data distributions, and substantial communication overhead caused by frequent transmission of large-scale models. To address these issues, we propose FedKLPR, a lightweight and communication-efficient federated learning framework for person re-identification. FedKLPR introduces four key components. First, the KL-Divergence Regularization Loss (KLL) constrains local models by minimizing the divergence from the global feature distribution, effectively mitigating the effects of statistical heterogeneity and improving convergence stability under non-IID conditions. Secondly, KL-Divergence-Prune Weighted Aggregation (KLPWA) integrates pruning ratio and distributional similarity into the aggregation process, thereby improving the robustness of the global model while significantly reducing communication overhead. Furthermore, sparse Activation Skipping (SAS) mitigates the dilution of critical parameters during the aggregation of pruned client models by excluding zero-valued weights from the update process. Finally, Cross-Round Recovery (CRR) introduces a dynamic pruning control mechanism that halts pruning when necessary, enabling deeper compression while maintaining model accuracy. Experimental results on eight benchmark datasets demonstrate that FedKLPR achieves significant communication reduction. Compared with the state-of-the-art, FedKLPR reduces 33\%-38\% communication cost on ResNet-50 and 20\%-40\% communication cost on ResNet-34, while maintaining model accuracy within 1\% degradation.
Person identification in unconstrained viewing environments presents significant challenges due to variations in distance, viewpoint, imaging conditions, and clothing. We introduce $\textbf{E}$va $\textbf{C}$lothes-Change from $\textbf{H}$idden $\textbf{O}$bjects - $\textbf{B}$ody $\textbf{ID}$entification (ECHO-BID), a class of long-term re-id models built on object-pretrained EVA-02 Large backbones. We compare ECHO-BID to 9 other models that vary systematically in backbone architecture, model size, scale of object classification pretraining, and transfer learning protocol. Models were evaluated on benchmark datasets across constrained, unconstrained, and occluded settings. ECHO-BID, with transfer learning on the most challenging clothes-change data, achieved state-of-the-art results on long-term re-id -- substantially outperforming other methods. ECHO-BID also surpassed other methods by a wide margin in occluded viewing scenarios. A combination of increased model size and Masked Image Modeling during pretraining underlie ECHO-BID's strong performance on long-term re-id. Notably, a smaller, but more challenging transfer learning dataset, generalized better across datasets than a larger, less challenging one. However, the larger dataset with an additional fine-tuning step proved best on the most difficult data. Selecting the correct pretrained backbone architecture and transfer learning protocols can drive substantial gains in long-term re-id performance.