The attention operator in Transformers can be viewed as a two-layer fast-weight MLP, whose weights are dynamically instantiated from input tokens and whose width equals sequence length N. As the context extends, the expressive capacity of such an N-width MLP increases, but scaling its fast weights becomes prohibitively expensive for extremely long sequences. Recently, this fast-weight scaling perspective has motivated the Mixture-of-Experts (MoE) attention, which partitions the sequence into fast-weight experts and sparsely routes the tokens to them. In this paper, we elevate this perspective to a unifying framework for a wide range of efficient attention methods by interpreting them as scaling fast weights through routing and/or compression. Then we propose a compress-and-route strategy, which compresses the N-width MLP into a narrower one using a small set of landmark queries and constructs deformable experts by gathering top-k activated key-value pairs for each landmark query. We call this strategy a Mixture of Top-k Activations (MiTA), and refer to the resulting efficient mechanism as MiTA attention. Preliminary experiments on vision tasks demonstrate the promise of our MiTA attention and motivate further investigation on its optimization and broader applications in more challenging settings.
Introduction: In neurosurgery, image-guided Neurosurgery Systems (IGNS) highly rely on preoperative brain magnetic resonance images (MRI) to assist surgeons in locating surgical targets and determining surgical paths. However, brain shift invalidates the preoperative MRI after dural opening. Updated intraoperative brain MRI with brain shift compensation is crucial for enhancing the precision of neuronavigation systems and ensuring the optimal outcome of surgical interventions. Methodology: We propose NeuralShift, a U-Net-based model that predicts brain shift entirely from pre-operative MRI for patients undergoing temporal lobe resection. We evaluated our results using Target Registration Errors (TREs) computed on anatomical landmarks located on the resection side and along the midline, and DICE scores comparing predicted intraoperative masks with masks derived from intraoperative MRI. Results: Our experimental results show that our model can predict the global deformation of the brain (DICE of 0.97) with accurate local displacements (achieve landmark TRE as low as 1.12 mm), compensating for large brain shifts during temporal lobe removal neurosurgery. Conclusion: Our proposed model is capable of predicting the global deformation of the brain during temporal lobe resection using only preoperative images, providing potential opportunities to the surgical team to increase safety and efficiency of neurosurgery and better outcomes to patients. Our contributions will be publicly available after acceptance in https://github.com/SurgicalDataScienceKCL/NeuralShift.
Fast flights with aggressive maneuvers in cluttered GNSS-denied environments require fast, reliable, and accurate UAV state estimation. In this paper, we present an approach for onboard state estimation of a high-speed UAV using a monocular RGB camera and an IMU. Our approach fuses data from Visual-Inertial Odometry (VIO), an onboard landmark-based camera measurement system, and an IMU to produce an accurate state estimate. Using onboard measurement data, we estimate and compensate for VIO drift through a novel mathematical drift model. State-of-the-art approaches often rely on more complex hardware (e.g., stereo cameras or rangefinders) and use uncorrected drifting VIO velocities, orientation, and angular rates, leading to errors during fast maneuvers. In contrast, our method corrects all VIO states (position, orientation, linear and angular velocity), resulting in accurate state estimation even during rapid and dynamic motion. Our approach was thoroughly validated through 1600 simulations and numerous real-world experiments. Furthermore, we applied the proposed method in the A2RL Drone Racing Challenge 2025, where our team advanced to the final four out of 210 teams and earned a medal.
Spherical surface parameterization is a fundamental tool in geometry processing and imaging science. For a genus-0 closed surface, many efficient algorithms can map the surface to the sphere; consequently, a broad class of task-driven genus-0 mapping problems can be reduced to constructing a high-quality spherical self-map. However, existing approaches often face a trade-off between satisfying task objectives (e.g., landmark or feature alignment), maintaining bijectivity, and controlling geometric distortion. We introduce the Spherical Beltrami Differential (SBD), a two-chart representation of quasiconformal self-maps of the sphere, and establish its correspondence with spherical homeomorphisms up to conformal automorphisms. Building on the Spectral Beltrami Network (SBN), we propose a neural optimization framework BOOST that optimizes two Beltrami fields on hemispherical stereographic charts and enforces global consistency through explicit seam-aware constraints. Experiments on large-deformation landmark matching and intensity-based spherical registration demonstrate the effectiveness of our proposed framework. We further apply the method to brain cortical surface registration, aligning sulcal landmarks and jointly matching cortical sulci depth maps, showing improved task fidelity with controlled distortion and robust bijective behavior.
Accurate identification of anatomical landmarks is crucial for various medical applications. Traditional manual landmarking is time-consuming and prone to inter-observer variability, while rule-based methods are often tailored to specific geometries or limited sets of landmarks. In recent years, anatomical surfaces have been effectively represented as point clouds, which are lightweight structures composed of spatial coordinates. Following this strategy and to overcome the limitations of existing landmarking techniques, we propose Landmark Point Transformer (LmPT), a method for automatic anatomical landmark detection on point clouds that can leverage homologous bones from different species for translational research. The LmPT model incorporates a conditioning mechanism that enables adaptability to different input types to conduct cross-species learning. We focus the evaluation of our approach on femoral landmarking using both human and newly annotated dog femurs, demonstrating its generalization and effectiveness across species. The code and dog femur dataset will be publicly available at: https://github.com/Pierreoo/LandmarkPointTransformer.
Cortical folding exhibits substantial inter-individual variability while preserving stable anatomical landmarks that enable fine-scale characterization of cortical organization. Among these, the three-hinge gyrus (3HG) serves as a key folding primitive, showing consistent topology yet meaningful variations in morphology, connectivity, and function. Existing landmark-based methods typically model each 3HG independently, ignoring that 3HGs form higher-order folding communities that capture mesoscale structure. This simplification weakens anatomical representation and makes one-to-one matching sensitive to positional variability and noise. We propose a spectral graph representation learning framework that models community-level folding units rather than isolated landmarks. Each 3HG is encoded using a dual-profile representation combining surface topology and structural connectivity. Subject-specific spectral clustering identifies coherent folding communities, followed by topological refinement to preserve anatomical continuity. For cross-subject correspondence, we introduce Joint Morphological-Geometric Matching, jointly optimizing geometric and morphometric similarity. Across over 1000 Human Connectome Project subjects, the resulting communities show reduced morphometric variance, stronger modular organization, improved hemispheric consistency, and superior alignment compared with atlas-based and landmark-based or embedding-based baselines. These findings demonstrate that community-level modeling provides a robust and anatomically grounded framework for individualized cortical characterization and reliable cross-subject correspondence.
Benefiting from the significant advancements in text-to-image diffusion models, research in personalized image generation, particularly customized portrait generation, has also made great strides recently. However, existing methods either require time-consuming fine-tuning and lack generalizability or fail to achieve high fidelity in facial details. To address these issues, we propose FaceSnap, a novel method based on Stable Diffusion (SD) that requires only a single reference image and produces extremely consistent results in a single inference stage. This method is plug-and-play and can be easily extended to different SD models. Specifically, we design a new Facial Attribute Mixer that can extract comprehensive fused information from both low-level specific features and high-level abstract features, providing better guidance for image generation. We also introduce a Landmark Predictor that maintains reference identity across landmarks with different poses, providing diverse yet detailed spatial control conditions for image generation. Then we use an ID-preserving module to inject these into the UNet. Experimental results demonstrate that our approach performs remarkably in personalized and customized portrait generation, surpassing other state-of-the-art methods in this domain.
Representation learning is central to many downstream tasks such as search, clustering, classification, and reranking. State-of-the-art sequence encoders typically collapse a variable-length token sequence to a single vector using a pooling operator, most commonly a special [CLS] token or mean pooling over token embeddings. In this paper, we identify systematic weaknesses of these pooling strategies: [CLS] tends to concentrate information toward the initial positions of the sequence and can under-represent distributed evidence, while mean pooling can dilute salient local signals, sometimes leading to worse short-context performance. To address these issues, we introduce Landmark (LMK) pooling, which partitions a sequence into chunks, inserts landmark tokens between chunks, and forms the final representation by mean-pooling the landmark token embeddings. This simple mechanism improves long-context extrapolation without sacrificing local salient features, at the cost of introducing a small number of special tokens. We empirically demonstrate that LMK pooling matches existing methods on short-context retrieval tasks and yields substantial improvements on long-context tasks, making it a practical and scalable alternative to existing pooling methods.
Location-based services rely heavily on efficient methods that search for relevant points-of-interest (POIs) near a given location. A k Nearest Neighbor (kNN) query is one such example that finds the k closest POIs from an agent's location. While most existing techniques focus on retrieving nearby POIs for a single agent, these search heuristics do not translate to many other applications. For example, Aggregate k Nearest Neighbor (AkNN) queries require POIs that are close to multiple agents. k Farthest Neighbor (kFN) queries require POIs that are the antithesis of nearest. Such problems naturally benefit from a hierarchical approach, but existing methods rely on Euclidean-based heuristics, which have diminished effectiveness in graphs such as road networks. We propose a novel data structure, COL-Tree (Compacted Object-Landmark Tree), to address this gap by enabling efficient hierarchical graph traversal using a more accurate landmark-based heuristic. We then present query algorithms that utilize COL-Trees to efficiently answer AkNN, kFN, and other queries. In our experiments on real-world and synthetic datasets, we demonstrate that our techniques significantly outperform existing approaches, achieving up to 4 orders of magnitude improvement. Moreover, this comes at a small pre-processing overhead in both theory and practice.
Survival analysis has become a standard approach for modelling time to default by time-varying covariates in credit risk. Unlike most existing methods that implicitly assume a stationary data-generating process, in practise, mortgage portfolios are exposed to various forms of data drift caused by changing borrower behaviour, macroeconomic conditions, policy regimes and so on. This study investigates the impact of data drift on survival-based credit risk models and proposes a dynamic joint modelling framework to improve robustness under non-stationary environments. The proposed model integrates a longitudinal behavioural marker derived from balance dynamics with a discrete-time hazard formulation, combined with landmark one-hot encoding and isotonic calibration. Three types of data drift (sudden, incremental and recurring) are simulated and analysed on mortgage loan datasets from Freddie Mac. Experiments and corresponding evidence show that the proposed landmark-based joint model consistently outperforms classical survival models, tree-based drift-adaptive learners and gradient boosting methods in terms of discrimination and calibration across all drift scenarios, which confirms the superiority of our model design.